1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/cdefs.h>
21__FBSDID("$FreeBSD$");
22
23/*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 *
26 * The 3945ABG network adapter doesn't use traditional hardware as
27 * many other adaptors do. Instead at run time the eeprom is set into a known
28 * state and told to load boot firmware. The boot firmware loads an init and a
29 * main  binary firmware image into SRAM on the card via DMA.
30 * Once the firmware is loaded, the driver/hw then
31 * communicate by way of circular dma rings via the SRAM to the firmware.
32 *
33 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34 * The 4 tx data rings allow for prioritization QoS.
35 *
36 * The rx data ring consists of 32 dma buffers. Two registers are used to
37 * indicate where in the ring the driver and the firmware are up to. The
38 * driver sets the initial read index (reg1) and the initial write index (reg2),
39 * the firmware updates the read index (reg1) on rx of a packet and fires an
40 * interrupt. The driver then processes the buffers starting at reg1 indicating
41 * to the firmware which buffers have been accessed by updating reg2. At the
42 * same time allocating new memory for the processed buffer.
43 *
44 * A similar thing happens with the tx rings. The difference is the firmware
45 * stop processing buffers once the queue is full and until confirmation
46 * of a successful transmition (tx_done) has occurred.
47 *
48 * The command ring operates in the same manner as the tx queues.
49 *
50 * All communication direct to the card (ie eeprom) is classed as Stage1
51 * communication
52 *
53 * All communication via the firmware to the card is classed as State2.
54 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55 * firmware. The bootstrap firmware and runtime firmware are loaded
56 * from host memory via dma to the card then told to execute. From this point
57 * on the majority of communications between the driver and the card goes
58 * via the firmware.
59 */
60
61#include "opt_wlan.h"
62#include "opt_wpi.h"
63
64#include <sys/param.h>
65#include <sys/sysctl.h>
66#include <sys/sockio.h>
67#include <sys/mbuf.h>
68#include <sys/kernel.h>
69#include <sys/socket.h>
70#include <sys/systm.h>
71#include <sys/malloc.h>
72#include <sys/queue.h>
73#include <sys/taskqueue.h>
74#include <sys/module.h>
75#include <sys/bus.h>
76#include <sys/endian.h>
77#include <sys/linker.h>
78#include <sys/firmware.h>
79
80#include <machine/bus.h>
81#include <machine/resource.h>
82#include <sys/rman.h>
83
84#include <dev/pci/pcireg.h>
85#include <dev/pci/pcivar.h>
86
87#include <net/bpf.h>
88#include <net/if.h>
89#include <net/if_var.h>
90#include <net/if_arp.h>
91#include <net/ethernet.h>
92#include <net/if_dl.h>
93#include <net/if_media.h>
94#include <net/if_types.h>
95
96#include <netinet/in.h>
97#include <netinet/in_systm.h>
98#include <netinet/in_var.h>
99#include <netinet/if_ether.h>
100#include <netinet/ip.h>
101
102#include <net80211/ieee80211_var.h>
103#include <net80211/ieee80211_radiotap.h>
104#include <net80211/ieee80211_regdomain.h>
105#include <net80211/ieee80211_ratectl.h>
106
107#include <dev/wpi/if_wpireg.h>
108#include <dev/wpi/if_wpivar.h>
109#include <dev/wpi/if_wpi_debug.h>
110
111struct wpi_ident {
112	uint16_t	vendor;
113	uint16_t	device;
114	uint16_t	subdevice;
115	const char	*name;
116};
117
118static const struct wpi_ident wpi_ident_table[] = {
119	/* The below entries support ABG regardless of the subid */
120	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
122	/* The below entries only support BG */
123	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
127	{ 0, 0, 0, NULL }
128};
129
130static int	wpi_probe(device_t);
131static int	wpi_attach(device_t);
132static void	wpi_radiotap_attach(struct wpi_softc *);
133static void	wpi_sysctlattach(struct wpi_softc *);
134static void	wpi_init_beacon(struct wpi_vap *);
135static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
136		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
137		    const uint8_t [IEEE80211_ADDR_LEN],
138		    const uint8_t [IEEE80211_ADDR_LEN]);
139static void	wpi_vap_delete(struct ieee80211vap *);
140static int	wpi_detach(device_t);
141static int	wpi_shutdown(device_t);
142static int	wpi_suspend(device_t);
143static int	wpi_resume(device_t);
144static int	wpi_nic_lock(struct wpi_softc *);
145static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
146static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
147static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
148		    void **, bus_size_t, bus_size_t);
149static void	wpi_dma_contig_free(struct wpi_dma_info *);
150static int	wpi_alloc_shared(struct wpi_softc *);
151static void	wpi_free_shared(struct wpi_softc *);
152static int	wpi_alloc_fwmem(struct wpi_softc *);
153static void	wpi_free_fwmem(struct wpi_softc *);
154static int	wpi_alloc_rx_ring(struct wpi_softc *);
155static void	wpi_update_rx_ring(struct wpi_softc *);
156static void	wpi_update_rx_ring_ps(struct wpi_softc *);
157static void	wpi_reset_rx_ring(struct wpi_softc *);
158static void	wpi_free_rx_ring(struct wpi_softc *);
159static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
160		    uint8_t);
161static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
162static void	wpi_update_tx_ring_ps(struct wpi_softc *,
163		    struct wpi_tx_ring *);
164static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
166static int	wpi_read_eeprom(struct wpi_softc *,
167		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
168static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
169static void	wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *,
170		    struct ieee80211_channel[]);
171static int	wpi_read_eeprom_channels(struct wpi_softc *, uint8_t);
172static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
173		    struct ieee80211_channel *);
174static void	wpi_getradiocaps(struct ieee80211com *, int, int *,
175		    struct ieee80211_channel[]);
176static int	wpi_setregdomain(struct ieee80211com *,
177		    struct ieee80211_regdomain *, int,
178		    struct ieee80211_channel[]);
179static int	wpi_read_eeprom_group(struct wpi_softc *, uint8_t);
180static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181		    const uint8_t mac[IEEE80211_ADDR_LEN]);
182static void	wpi_node_free(struct ieee80211_node *);
183static void	wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
184		    const struct ieee80211_rx_stats *,
185		    int, int);
186static void	wpi_restore_node(void *, struct ieee80211_node *);
187static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
188static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
189static void	wpi_calib_timeout(void *);
190static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
191		    struct wpi_rx_data *);
192static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
193		    struct wpi_rx_data *);
194static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
195static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
196static void	wpi_notif_intr(struct wpi_softc *);
197static void	wpi_wakeup_intr(struct wpi_softc *);
198#ifdef WPI_DEBUG
199static void	wpi_debug_registers(struct wpi_softc *);
200#endif
201static void	wpi_fatal_intr(struct wpi_softc *);
202static void	wpi_intr(void *);
203static void	wpi_free_txfrags(struct wpi_softc *, uint16_t);
204static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
205static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
206		    struct ieee80211_node *);
207static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
208		    struct ieee80211_node *,
209		    const struct ieee80211_bpf_params *);
210static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
211		    const struct ieee80211_bpf_params *);
212static int	wpi_transmit(struct ieee80211com *, struct mbuf *);
213static void	wpi_watchdog_rfkill(void *);
214static void	wpi_scan_timeout(void *);
215static void	wpi_tx_timeout(void *);
216static void	wpi_parent(struct ieee80211com *);
217static int	wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t,
218		    int);
219static int	wpi_mrr_setup(struct wpi_softc *);
220static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
221static int	wpi_add_broadcast_node(struct wpi_softc *, int);
222static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
223static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
224static int	wpi_updateedca(struct ieee80211com *);
225static void	wpi_set_promisc(struct wpi_softc *);
226static void	wpi_update_promisc(struct ieee80211com *);
227static void	wpi_update_mcast(struct ieee80211com *);
228static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
229static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
230static void	wpi_power_calibration(struct wpi_softc *);
231static int	wpi_set_txpower(struct wpi_softc *, int);
232static int	wpi_get_power_index(struct wpi_softc *,
233		    struct wpi_power_group *, uint8_t, int, int);
234static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
235static int	wpi_send_btcoex(struct wpi_softc *);
236static int	wpi_send_rxon(struct wpi_softc *, int, int);
237static int	wpi_config(struct wpi_softc *);
238static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
239		    struct ieee80211_channel *, uint8_t);
240static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
241static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
242		    struct ieee80211_channel *);
243static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
244static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
245static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
246static int	wpi_config_beacon(struct wpi_vap *);
247static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
248static void	wpi_update_beacon(struct ieee80211vap *, int);
249static void	wpi_newassoc(struct ieee80211_node *, int);
250static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
251static int	wpi_load_key(struct ieee80211_node *,
252		    const struct ieee80211_key *);
253static void	wpi_load_key_cb(void *, struct ieee80211_node *);
254static int	wpi_set_global_keys(struct ieee80211_node *);
255static int	wpi_del_key(struct ieee80211_node *,
256		    const struct ieee80211_key *);
257static void	wpi_del_key_cb(void *, struct ieee80211_node *);
258static int	wpi_process_key(struct ieee80211vap *,
259		    const struct ieee80211_key *, int);
260static int	wpi_key_set(struct ieee80211vap *,
261		    const struct ieee80211_key *);
262static int	wpi_key_delete(struct ieee80211vap *,
263		    const struct ieee80211_key *);
264static int	wpi_post_alive(struct wpi_softc *);
265static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *,
266		    uint32_t);
267static int	wpi_load_firmware(struct wpi_softc *);
268static int	wpi_read_firmware(struct wpi_softc *);
269static void	wpi_unload_firmware(struct wpi_softc *);
270static int	wpi_clock_wait(struct wpi_softc *);
271static int	wpi_apm_init(struct wpi_softc *);
272static void	wpi_apm_stop_master(struct wpi_softc *);
273static void	wpi_apm_stop(struct wpi_softc *);
274static void	wpi_nic_config(struct wpi_softc *);
275static int	wpi_hw_init(struct wpi_softc *);
276static void	wpi_hw_stop(struct wpi_softc *);
277static void	wpi_radio_on(void *, int);
278static void	wpi_radio_off(void *, int);
279static int	wpi_init(struct wpi_softc *);
280static void	wpi_stop_locked(struct wpi_softc *);
281static void	wpi_stop(struct wpi_softc *);
282static void	wpi_scan_start(struct ieee80211com *);
283static void	wpi_scan_end(struct ieee80211com *);
284static void	wpi_set_channel(struct ieee80211com *);
285static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
286static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
287
288static device_method_t wpi_methods[] = {
289	/* Device interface */
290	DEVMETHOD(device_probe,		wpi_probe),
291	DEVMETHOD(device_attach,	wpi_attach),
292	DEVMETHOD(device_detach,	wpi_detach),
293	DEVMETHOD(device_shutdown,	wpi_shutdown),
294	DEVMETHOD(device_suspend,	wpi_suspend),
295	DEVMETHOD(device_resume,	wpi_resume),
296
297	DEVMETHOD_END
298};
299
300static driver_t wpi_driver = {
301	"wpi",
302	wpi_methods,
303	sizeof (struct wpi_softc)
304};
305static devclass_t wpi_devclass;
306
307DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
308
309MODULE_VERSION(wpi, 1);
310
311MODULE_DEPEND(wpi, pci,  1, 1, 1);
312MODULE_DEPEND(wpi, wlan, 1, 1, 1);
313MODULE_DEPEND(wpi, firmware, 1, 1, 1);
314
315static int
316wpi_probe(device_t dev)
317{
318	const struct wpi_ident *ident;
319
320	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
321		if (pci_get_vendor(dev) == ident->vendor &&
322		    pci_get_device(dev) == ident->device) {
323			device_set_desc(dev, ident->name);
324			return (BUS_PROBE_DEFAULT);
325		}
326	}
327	return ENXIO;
328}
329
330static int
331wpi_attach(device_t dev)
332{
333	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
334	struct ieee80211com *ic;
335	uint8_t i;
336	int error, rid;
337#ifdef WPI_DEBUG
338	int supportsa = 1;
339	const struct wpi_ident *ident;
340#endif
341
342	sc->sc_dev = dev;
343
344#ifdef WPI_DEBUG
345	error = resource_int_value(device_get_name(sc->sc_dev),
346	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
347	if (error != 0)
348		sc->sc_debug = 0;
349#else
350	sc->sc_debug = 0;
351#endif
352
353	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
354
355	/*
356	 * Get the offset of the PCI Express Capability Structure in PCI
357	 * Configuration Space.
358	 */
359	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
360	if (error != 0) {
361		device_printf(dev, "PCIe capability structure not found!\n");
362		return error;
363	}
364
365	/*
366	 * Some card's only support 802.11b/g not a, check to see if
367	 * this is one such card. A 0x0 in the subdevice table indicates
368	 * the entire subdevice range is to be ignored.
369	 */
370#ifdef WPI_DEBUG
371	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
372		if (ident->subdevice &&
373		    pci_get_subdevice(dev) == ident->subdevice) {
374		    supportsa = 0;
375		    break;
376		}
377	}
378#endif
379
380	/* Clear device-specific "PCI retry timeout" register (41h). */
381	pci_write_config(dev, 0x41, 0, 1);
382
383	/* Enable bus-mastering. */
384	pci_enable_busmaster(dev);
385
386	rid = PCIR_BAR(0);
387	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
388	    RF_ACTIVE);
389	if (sc->mem == NULL) {
390		device_printf(dev, "can't map mem space\n");
391		return ENOMEM;
392	}
393	sc->sc_st = rman_get_bustag(sc->mem);
394	sc->sc_sh = rman_get_bushandle(sc->mem);
395
396	rid = 1;
397	if (pci_alloc_msi(dev, &rid) == 0)
398		rid = 1;
399	else
400		rid = 0;
401	/* Install interrupt handler. */
402	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
403	    (rid != 0 ? 0 : RF_SHAREABLE));
404	if (sc->irq == NULL) {
405		device_printf(dev, "can't map interrupt\n");
406		error = ENOMEM;
407		goto fail;
408	}
409
410	WPI_LOCK_INIT(sc);
411	WPI_TX_LOCK_INIT(sc);
412	WPI_RXON_LOCK_INIT(sc);
413	WPI_NT_LOCK_INIT(sc);
414	WPI_TXQ_LOCK_INIT(sc);
415	WPI_TXQ_STATE_LOCK_INIT(sc);
416
417	/* Allocate DMA memory for firmware transfers. */
418	if ((error = wpi_alloc_fwmem(sc)) != 0) {
419		device_printf(dev,
420		    "could not allocate memory for firmware, error %d\n",
421		    error);
422		goto fail;
423	}
424
425	/* Allocate shared page. */
426	if ((error = wpi_alloc_shared(sc)) != 0) {
427		device_printf(dev, "could not allocate shared page\n");
428		goto fail;
429	}
430
431	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
432	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
433		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
434			device_printf(dev,
435			    "could not allocate TX ring %d, error %d\n", i,
436			    error);
437			goto fail;
438		}
439	}
440
441	/* Allocate RX ring. */
442	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
443		device_printf(dev, "could not allocate RX ring, error %d\n",
444		    error);
445		goto fail;
446	}
447
448	/* Clear pending interrupts. */
449	WPI_WRITE(sc, WPI_INT, 0xffffffff);
450
451	ic = &sc->sc_ic;
452	ic->ic_softc = sc;
453	ic->ic_name = device_get_nameunit(dev);
454	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
455	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
456
457	/* Set device capabilities. */
458	ic->ic_caps =
459		  IEEE80211_C_STA		/* station mode supported */
460		| IEEE80211_C_IBSS		/* IBSS mode supported */
461		| IEEE80211_C_HOSTAP		/* Host access point mode */
462		| IEEE80211_C_MONITOR		/* monitor mode supported */
463		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
464		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
465		| IEEE80211_C_TXFRAG		/* handle tx frags */
466		| IEEE80211_C_TXPMGT		/* tx power management */
467		| IEEE80211_C_SHSLOT		/* short slot time supported */
468		| IEEE80211_C_WPA		/* 802.11i */
469		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
470		| IEEE80211_C_WME		/* 802.11e */
471		| IEEE80211_C_PMGT		/* Station-side power mgmt */
472		;
473
474	ic->ic_cryptocaps =
475		  IEEE80211_CRYPTO_AES_CCM;
476
477	/*
478	 * Read in the eeprom and also setup the channels for
479	 * net80211. We don't set the rates as net80211 does this for us
480	 */
481	if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
482		device_printf(dev, "could not read EEPROM, error %d\n",
483		    error);
484		goto fail;
485	}
486
487#ifdef WPI_DEBUG
488	if (bootverbose) {
489		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
490		    sc->domain);
491		device_printf(sc->sc_dev, "Hardware Type: %c\n",
492		    sc->type > 1 ? 'B': '?');
493		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
494		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
495		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
496		    supportsa ? "does" : "does not");
497
498		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
499		   check what sc->rev really represents - benjsc 20070615 */
500	}
501#endif
502
503	ieee80211_ifattach(ic);
504	ic->ic_vap_create = wpi_vap_create;
505	ic->ic_vap_delete = wpi_vap_delete;
506	ic->ic_parent = wpi_parent;
507	ic->ic_raw_xmit = wpi_raw_xmit;
508	ic->ic_transmit = wpi_transmit;
509	ic->ic_node_alloc = wpi_node_alloc;
510	sc->sc_node_free = ic->ic_node_free;
511	ic->ic_node_free = wpi_node_free;
512	ic->ic_wme.wme_update = wpi_updateedca;
513	ic->ic_update_promisc = wpi_update_promisc;
514	ic->ic_update_mcast = wpi_update_mcast;
515	ic->ic_newassoc = wpi_newassoc;
516	ic->ic_scan_start = wpi_scan_start;
517	ic->ic_scan_end = wpi_scan_end;
518	ic->ic_set_channel = wpi_set_channel;
519	ic->ic_scan_curchan = wpi_scan_curchan;
520	ic->ic_scan_mindwell = wpi_scan_mindwell;
521	ic->ic_getradiocaps = wpi_getradiocaps;
522	ic->ic_setregdomain = wpi_setregdomain;
523
524	sc->sc_update_rx_ring = wpi_update_rx_ring;
525	sc->sc_update_tx_ring = wpi_update_tx_ring;
526
527	wpi_radiotap_attach(sc);
528
529	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
530	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
531	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
532	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
533	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
534	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
535
536	wpi_sysctlattach(sc);
537
538	/*
539	 * Hook our interrupt after all initialization is complete.
540	 */
541	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
542	    NULL, wpi_intr, sc, &sc->sc_ih);
543	if (error != 0) {
544		device_printf(dev, "can't establish interrupt, error %d\n",
545		    error);
546		goto fail;
547	}
548
549	if (bootverbose)
550		ieee80211_announce(ic);
551
552#ifdef WPI_DEBUG
553	if (sc->sc_debug & WPI_DEBUG_HW)
554		ieee80211_announce_channels(ic);
555#endif
556
557	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
558	return 0;
559
560fail:	wpi_detach(dev);
561	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
562	return error;
563}
564
565/*
566 * Attach the interface to 802.11 radiotap.
567 */
568static void
569wpi_radiotap_attach(struct wpi_softc *sc)
570{
571	struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
572	struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
573
574	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
575	ieee80211_radiotap_attach(&sc->sc_ic,
576	    &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
577	    &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
578	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
579}
580
581static void
582wpi_sysctlattach(struct wpi_softc *sc)
583{
584#ifdef WPI_DEBUG
585	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
586	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
587
588	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
589	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
590		"control debugging printfs");
591#endif
592}
593
594static void
595wpi_init_beacon(struct wpi_vap *wvp)
596{
597	struct wpi_buf *bcn = &wvp->wv_bcbuf;
598	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
599
600	cmd->id = WPI_ID_BROADCAST;
601	cmd->ofdm_mask = 0xff;
602	cmd->cck_mask = 0x0f;
603	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
604
605	/*
606	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
607	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
608	 */
609	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
610
611	bcn->code = WPI_CMD_SET_BEACON;
612	bcn->ac = WPI_CMD_QUEUE_NUM;
613	bcn->size = sizeof(struct wpi_cmd_beacon);
614}
615
616static struct ieee80211vap *
617wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
618    enum ieee80211_opmode opmode, int flags,
619    const uint8_t bssid[IEEE80211_ADDR_LEN],
620    const uint8_t mac[IEEE80211_ADDR_LEN])
621{
622	struct wpi_vap *wvp;
623	struct ieee80211vap *vap;
624
625	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
626		return NULL;
627
628	wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
629	vap = &wvp->wv_vap;
630	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
631
632	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
633		WPI_VAP_LOCK_INIT(wvp);
634		wpi_init_beacon(wvp);
635	}
636
637	/* Override with driver methods. */
638	vap->iv_key_set = wpi_key_set;
639	vap->iv_key_delete = wpi_key_delete;
640	if (opmode == IEEE80211_M_IBSS) {
641		wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
642		vap->iv_recv_mgmt = wpi_ibss_recv_mgmt;
643	}
644	wvp->wv_newstate = vap->iv_newstate;
645	vap->iv_newstate = wpi_newstate;
646	vap->iv_update_beacon = wpi_update_beacon;
647	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
648
649	ieee80211_ratectl_init(vap);
650	/* Complete setup. */
651	ieee80211_vap_attach(vap, ieee80211_media_change,
652	    ieee80211_media_status, mac);
653	ic->ic_opmode = opmode;
654	return vap;
655}
656
657static void
658wpi_vap_delete(struct ieee80211vap *vap)
659{
660	struct wpi_vap *wvp = WPI_VAP(vap);
661	struct wpi_buf *bcn = &wvp->wv_bcbuf;
662	enum ieee80211_opmode opmode = vap->iv_opmode;
663
664	ieee80211_ratectl_deinit(vap);
665	ieee80211_vap_detach(vap);
666
667	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
668		if (bcn->m != NULL)
669			m_freem(bcn->m);
670
671		WPI_VAP_LOCK_DESTROY(wvp);
672	}
673
674	free(wvp, M_80211_VAP);
675}
676
677static int
678wpi_detach(device_t dev)
679{
680	struct wpi_softc *sc = device_get_softc(dev);
681	struct ieee80211com *ic = &sc->sc_ic;
682	uint8_t qid;
683
684	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
685
686	if (ic->ic_vap_create == wpi_vap_create) {
687		ieee80211_draintask(ic, &sc->sc_radioon_task);
688		ieee80211_draintask(ic, &sc->sc_radiooff_task);
689
690		wpi_stop(sc);
691
692		callout_drain(&sc->watchdog_rfkill);
693		callout_drain(&sc->tx_timeout);
694		callout_drain(&sc->scan_timeout);
695		callout_drain(&sc->calib_to);
696		ieee80211_ifdetach(ic);
697	}
698
699	/* Uninstall interrupt handler. */
700	if (sc->irq != NULL) {
701		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
702		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
703		    sc->irq);
704		pci_release_msi(dev);
705	}
706
707	if (sc->txq[0].data_dmat) {
708		/* Free DMA resources. */
709		for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
710			wpi_free_tx_ring(sc, &sc->txq[qid]);
711
712		wpi_free_rx_ring(sc);
713		wpi_free_shared(sc);
714	}
715
716	if (sc->fw_dma.tag)
717		wpi_free_fwmem(sc);
718
719	if (sc->mem != NULL)
720		bus_release_resource(dev, SYS_RES_MEMORY,
721		    rman_get_rid(sc->mem), sc->mem);
722
723	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
724	WPI_TXQ_STATE_LOCK_DESTROY(sc);
725	WPI_TXQ_LOCK_DESTROY(sc);
726	WPI_NT_LOCK_DESTROY(sc);
727	WPI_RXON_LOCK_DESTROY(sc);
728	WPI_TX_LOCK_DESTROY(sc);
729	WPI_LOCK_DESTROY(sc);
730	return 0;
731}
732
733static int
734wpi_shutdown(device_t dev)
735{
736	struct wpi_softc *sc = device_get_softc(dev);
737
738	wpi_stop(sc);
739	return 0;
740}
741
742static int
743wpi_suspend(device_t dev)
744{
745	struct wpi_softc *sc = device_get_softc(dev);
746	struct ieee80211com *ic = &sc->sc_ic;
747
748	ieee80211_suspend_all(ic);
749	return 0;
750}
751
752static int
753wpi_resume(device_t dev)
754{
755	struct wpi_softc *sc = device_get_softc(dev);
756	struct ieee80211com *ic = &sc->sc_ic;
757
758	/* Clear device-specific "PCI retry timeout" register (41h). */
759	pci_write_config(dev, 0x41, 0, 1);
760
761	ieee80211_resume_all(ic);
762	return 0;
763}
764
765/*
766 * Grab exclusive access to NIC memory.
767 */
768static int
769wpi_nic_lock(struct wpi_softc *sc)
770{
771	int ntries;
772
773	/* Request exclusive access to NIC. */
774	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
775
776	/* Spin until we actually get the lock. */
777	for (ntries = 0; ntries < 1000; ntries++) {
778		if ((WPI_READ(sc, WPI_GP_CNTRL) &
779		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
780		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
781			return 0;
782		DELAY(10);
783	}
784
785	device_printf(sc->sc_dev, "could not lock memory\n");
786
787	return ETIMEDOUT;
788}
789
790/*
791 * Release lock on NIC memory.
792 */
793static __inline void
794wpi_nic_unlock(struct wpi_softc *sc)
795{
796	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
797}
798
799static __inline uint32_t
800wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
801{
802	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
803	WPI_BARRIER_READ_WRITE(sc);
804	return WPI_READ(sc, WPI_PRPH_RDATA);
805}
806
807static __inline void
808wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
809{
810	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
811	WPI_BARRIER_WRITE(sc);
812	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
813}
814
815static __inline void
816wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
817{
818	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
819}
820
821static __inline void
822wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
823{
824	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
825}
826
827static __inline void
828wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
829    const uint32_t *data, uint32_t count)
830{
831	for (; count != 0; count--, data++, addr += 4)
832		wpi_prph_write(sc, addr, *data);
833}
834
835static __inline uint32_t
836wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
837{
838	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
839	WPI_BARRIER_READ_WRITE(sc);
840	return WPI_READ(sc, WPI_MEM_RDATA);
841}
842
843static __inline void
844wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
845    int count)
846{
847	for (; count > 0; count--, addr += 4)
848		*data++ = wpi_mem_read(sc, addr);
849}
850
851static int
852wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
853{
854	uint8_t *out = data;
855	uint32_t val;
856	int error, ntries;
857
858	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
859
860	if ((error = wpi_nic_lock(sc)) != 0)
861		return error;
862
863	for (; count > 0; count -= 2, addr++) {
864		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
865		for (ntries = 0; ntries < 10; ntries++) {
866			val = WPI_READ(sc, WPI_EEPROM);
867			if (val & WPI_EEPROM_READ_VALID)
868				break;
869			DELAY(5);
870		}
871		if (ntries == 10) {
872			device_printf(sc->sc_dev,
873			    "timeout reading ROM at 0x%x\n", addr);
874			return ETIMEDOUT;
875		}
876		*out++= val >> 16;
877		if (count > 1)
878			*out ++= val >> 24;
879	}
880
881	wpi_nic_unlock(sc);
882
883	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
884
885	return 0;
886}
887
888static void
889wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
890{
891	if (error != 0)
892		return;
893	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
894	*(bus_addr_t *)arg = segs[0].ds_addr;
895}
896
897/*
898 * Allocates a contiguous block of dma memory of the requested size and
899 * alignment.
900 */
901static int
902wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
903    void **kvap, bus_size_t size, bus_size_t alignment)
904{
905	int error;
906
907	dma->tag = NULL;
908	dma->size = size;
909
910	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
911	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
912	    1, size, 0, NULL, NULL, &dma->tag);
913	if (error != 0)
914		goto fail;
915
916	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
917	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
918	if (error != 0)
919		goto fail;
920
921	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
922	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
923	if (error != 0)
924		goto fail;
925
926	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
927
928	if (kvap != NULL)
929		*kvap = dma->vaddr;
930
931	return 0;
932
933fail:	wpi_dma_contig_free(dma);
934	return error;
935}
936
937static void
938wpi_dma_contig_free(struct wpi_dma_info *dma)
939{
940	if (dma->vaddr != NULL) {
941		bus_dmamap_sync(dma->tag, dma->map,
942		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
943		bus_dmamap_unload(dma->tag, dma->map);
944		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
945		dma->vaddr = NULL;
946	}
947	if (dma->tag != NULL) {
948		bus_dma_tag_destroy(dma->tag);
949		dma->tag = NULL;
950	}
951}
952
953/*
954 * Allocate a shared page between host and NIC.
955 */
956static int
957wpi_alloc_shared(struct wpi_softc *sc)
958{
959	/* Shared buffer must be aligned on a 4KB boundary. */
960	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
961	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
962}
963
964static void
965wpi_free_shared(struct wpi_softc *sc)
966{
967	wpi_dma_contig_free(&sc->shared_dma);
968}
969
970/*
971 * Allocate DMA-safe memory for firmware transfer.
972 */
973static int
974wpi_alloc_fwmem(struct wpi_softc *sc)
975{
976	/* Must be aligned on a 16-byte boundary. */
977	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
978	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
979}
980
981static void
982wpi_free_fwmem(struct wpi_softc *sc)
983{
984	wpi_dma_contig_free(&sc->fw_dma);
985}
986
987static int
988wpi_alloc_rx_ring(struct wpi_softc *sc)
989{
990	struct wpi_rx_ring *ring = &sc->rxq;
991	bus_size_t size;
992	int i, error;
993
994	ring->cur = 0;
995	ring->update = 0;
996
997	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
998
999	/* Allocate RX descriptors (16KB aligned.) */
1000	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1001	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1002	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1003	if (error != 0) {
1004		device_printf(sc->sc_dev,
1005		    "%s: could not allocate RX ring DMA memory, error %d\n",
1006		    __func__, error);
1007		goto fail;
1008	}
1009
1010	/* Create RX buffer DMA tag. */
1011	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1012	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1013	    MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat);
1014	if (error != 0) {
1015		device_printf(sc->sc_dev,
1016		    "%s: could not create RX buf DMA tag, error %d\n",
1017		    __func__, error);
1018		goto fail;
1019	}
1020
1021	/*
1022	 * Allocate and map RX buffers.
1023	 */
1024	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1025		struct wpi_rx_data *data = &ring->data[i];
1026		bus_addr_t paddr;
1027
1028		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1029		if (error != 0) {
1030			device_printf(sc->sc_dev,
1031			    "%s: could not create RX buf DMA map, error %d\n",
1032			    __func__, error);
1033			goto fail;
1034		}
1035
1036		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1037		if (data->m == NULL) {
1038			device_printf(sc->sc_dev,
1039			    "%s: could not allocate RX mbuf\n", __func__);
1040			error = ENOBUFS;
1041			goto fail;
1042		}
1043
1044		error = bus_dmamap_load(ring->data_dmat, data->map,
1045		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1046		    &paddr, BUS_DMA_NOWAIT);
1047		if (error != 0 && error != EFBIG) {
1048			device_printf(sc->sc_dev,
1049			    "%s: can't map mbuf (error %d)\n", __func__,
1050			    error);
1051			goto fail;
1052		}
1053
1054		/* Set physical address of RX buffer. */
1055		ring->desc[i] = htole32(paddr);
1056	}
1057
1058	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1059	    BUS_DMASYNC_PREWRITE);
1060
1061	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1062
1063	return 0;
1064
1065fail:	wpi_free_rx_ring(sc);
1066
1067	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1068
1069	return error;
1070}
1071
1072static void
1073wpi_update_rx_ring(struct wpi_softc *sc)
1074{
1075	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1076}
1077
1078static void
1079wpi_update_rx_ring_ps(struct wpi_softc *sc)
1080{
1081	struct wpi_rx_ring *ring = &sc->rxq;
1082
1083	if (ring->update != 0) {
1084		/* Wait for INT_WAKEUP event. */
1085		return;
1086	}
1087
1088	WPI_TXQ_LOCK(sc);
1089	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1090	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1091		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1092		    __func__);
1093		ring->update = 1;
1094	} else {
1095		wpi_update_rx_ring(sc);
1096		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1097	}
1098	WPI_TXQ_UNLOCK(sc);
1099}
1100
1101static void
1102wpi_reset_rx_ring(struct wpi_softc *sc)
1103{
1104	struct wpi_rx_ring *ring = &sc->rxq;
1105	int ntries;
1106
1107	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1108
1109	if (wpi_nic_lock(sc) == 0) {
1110		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1111		for (ntries = 0; ntries < 1000; ntries++) {
1112			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1113			    WPI_FH_RX_STATUS_IDLE)
1114				break;
1115			DELAY(10);
1116		}
1117		wpi_nic_unlock(sc);
1118	}
1119
1120	ring->cur = 0;
1121	ring->update = 0;
1122}
1123
1124static void
1125wpi_free_rx_ring(struct wpi_softc *sc)
1126{
1127	struct wpi_rx_ring *ring = &sc->rxq;
1128	int i;
1129
1130	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1131
1132	wpi_dma_contig_free(&ring->desc_dma);
1133
1134	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1135		struct wpi_rx_data *data = &ring->data[i];
1136
1137		if (data->m != NULL) {
1138			bus_dmamap_sync(ring->data_dmat, data->map,
1139			    BUS_DMASYNC_POSTREAD);
1140			bus_dmamap_unload(ring->data_dmat, data->map);
1141			m_freem(data->m);
1142			data->m = NULL;
1143		}
1144		if (data->map != NULL)
1145			bus_dmamap_destroy(ring->data_dmat, data->map);
1146	}
1147	if (ring->data_dmat != NULL) {
1148		bus_dma_tag_destroy(ring->data_dmat);
1149		ring->data_dmat = NULL;
1150	}
1151}
1152
1153static int
1154wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid)
1155{
1156	bus_addr_t paddr;
1157	bus_size_t size;
1158	int i, error;
1159
1160	ring->qid = qid;
1161	ring->queued = 0;
1162	ring->cur = 0;
1163	ring->pending = 0;
1164	ring->update = 0;
1165
1166	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1167
1168	/* Allocate TX descriptors (16KB aligned.) */
1169	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1170	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1171	    size, WPI_RING_DMA_ALIGN);
1172	if (error != 0) {
1173		device_printf(sc->sc_dev,
1174		    "%s: could not allocate TX ring DMA memory, error %d\n",
1175		    __func__, error);
1176		goto fail;
1177	}
1178
1179	/* Update shared area with ring physical address. */
1180	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1181	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1182	    BUS_DMASYNC_PREWRITE);
1183
1184	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1185	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1186	    size, 4);
1187	if (error != 0) {
1188		device_printf(sc->sc_dev,
1189		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1190		    __func__, error);
1191		goto fail;
1192	}
1193
1194	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1195	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1196	    WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
1197	if (error != 0) {
1198		device_printf(sc->sc_dev,
1199		    "%s: could not create TX buf DMA tag, error %d\n",
1200		    __func__, error);
1201		goto fail;
1202	}
1203
1204	paddr = ring->cmd_dma.paddr;
1205	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1206		struct wpi_tx_data *data = &ring->data[i];
1207
1208		data->cmd_paddr = paddr;
1209		paddr += sizeof (struct wpi_tx_cmd);
1210
1211		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1212		if (error != 0) {
1213			device_printf(sc->sc_dev,
1214			    "%s: could not create TX buf DMA map, error %d\n",
1215			    __func__, error);
1216			goto fail;
1217		}
1218	}
1219
1220	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1221
1222	return 0;
1223
1224fail:	wpi_free_tx_ring(sc, ring);
1225	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1226	return error;
1227}
1228
1229static void
1230wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1231{
1232	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1233}
1234
1235static void
1236wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1237{
1238
1239	if (ring->update != 0) {
1240		/* Wait for INT_WAKEUP event. */
1241		return;
1242	}
1243
1244	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1245	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1246		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1247		    __func__, ring->qid);
1248		ring->update = 1;
1249	} else {
1250		wpi_update_tx_ring(sc, ring);
1251		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1252	}
1253}
1254
1255static void
1256wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1257{
1258	int i;
1259
1260	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1261
1262	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1263		struct wpi_tx_data *data = &ring->data[i];
1264
1265		if (data->m != NULL) {
1266			bus_dmamap_sync(ring->data_dmat, data->map,
1267			    BUS_DMASYNC_POSTWRITE);
1268			bus_dmamap_unload(ring->data_dmat, data->map);
1269			m_freem(data->m);
1270			data->m = NULL;
1271		}
1272		if (data->ni != NULL) {
1273			ieee80211_free_node(data->ni);
1274			data->ni = NULL;
1275		}
1276	}
1277	/* Clear TX descriptors. */
1278	memset(ring->desc, 0, ring->desc_dma.size);
1279	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1280	    BUS_DMASYNC_PREWRITE);
1281	ring->queued = 0;
1282	ring->cur = 0;
1283	ring->pending = 0;
1284	ring->update = 0;
1285}
1286
1287static void
1288wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1289{
1290	int i;
1291
1292	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1293
1294	wpi_dma_contig_free(&ring->desc_dma);
1295	wpi_dma_contig_free(&ring->cmd_dma);
1296
1297	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1298		struct wpi_tx_data *data = &ring->data[i];
1299
1300		if (data->m != NULL) {
1301			bus_dmamap_sync(ring->data_dmat, data->map,
1302			    BUS_DMASYNC_POSTWRITE);
1303			bus_dmamap_unload(ring->data_dmat, data->map);
1304			m_freem(data->m);
1305		}
1306		if (data->map != NULL)
1307			bus_dmamap_destroy(ring->data_dmat, data->map);
1308	}
1309	if (ring->data_dmat != NULL) {
1310		bus_dma_tag_destroy(ring->data_dmat);
1311		ring->data_dmat = NULL;
1312	}
1313}
1314
1315/*
1316 * Extract various information from EEPROM.
1317 */
1318static int
1319wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1320{
1321#define WPI_CHK(res) do {		\
1322	if ((error = res) != 0)		\
1323		goto fail;		\
1324} while (0)
1325	uint8_t i;
1326	int error;
1327
1328	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1329
1330	/* Adapter has to be powered on for EEPROM access to work. */
1331	if ((error = wpi_apm_init(sc)) != 0) {
1332		device_printf(sc->sc_dev,
1333		    "%s: could not power ON adapter, error %d\n", __func__,
1334		    error);
1335		return error;
1336	}
1337
1338	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1339		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1340		error = EIO;
1341		goto fail;
1342	}
1343	/* Clear HW ownership of EEPROM. */
1344	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1345
1346	/* Read the hardware capabilities, revision and SKU type. */
1347	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1348	    sizeof(sc->cap)));
1349	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1350	    sizeof(sc->rev)));
1351	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1352	    sizeof(sc->type)));
1353
1354	sc->rev = le16toh(sc->rev);
1355	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1356	    sc->rev, sc->type);
1357
1358	/* Read the regulatory domain (4 ASCII characters.) */
1359	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1360	    sizeof(sc->domain)));
1361
1362	/* Read MAC address. */
1363	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1364	    IEEE80211_ADDR_LEN));
1365
1366	/* Read the list of authorized channels. */
1367	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1368		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1369
1370	/* Read the list of TX power groups. */
1371	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1372		WPI_CHK(wpi_read_eeprom_group(sc, i));
1373
1374fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1375
1376	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1377	    __func__);
1378
1379	return error;
1380#undef WPI_CHK
1381}
1382
1383/*
1384 * Translate EEPROM flags to net80211.
1385 */
1386static uint32_t
1387wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1388{
1389	uint32_t nflags;
1390
1391	nflags = 0;
1392	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1393		nflags |= IEEE80211_CHAN_PASSIVE;
1394	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1395		nflags |= IEEE80211_CHAN_NOADHOC;
1396	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1397		nflags |= IEEE80211_CHAN_DFS;
1398		/* XXX apparently IBSS may still be marked */
1399		nflags |= IEEE80211_CHAN_NOADHOC;
1400	}
1401
1402	/* XXX HOSTAP uses WPI_MODE_IBSS */
1403	if (nflags & IEEE80211_CHAN_NOADHOC)
1404		nflags |= IEEE80211_CHAN_NOHOSTAP;
1405
1406	return nflags;
1407}
1408
1409static void
1410wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans,
1411    int *nchans, struct ieee80211_channel chans[])
1412{
1413	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1414	const struct wpi_chan_band *band = &wpi_bands[n];
1415	uint32_t nflags;
1416	uint8_t bands[IEEE80211_MODE_BYTES];
1417	uint8_t chan, i;
1418	int error;
1419
1420	memset(bands, 0, sizeof(bands));
1421
1422	if (n == 0) {
1423		setbit(bands, IEEE80211_MODE_11B);
1424		setbit(bands, IEEE80211_MODE_11G);
1425	} else
1426		setbit(bands, IEEE80211_MODE_11A);
1427
1428	for (i = 0; i < band->nchan; i++) {
1429		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1430			DPRINTF(sc, WPI_DEBUG_EEPROM,
1431			    "Channel Not Valid: %d, band %d\n",
1432			     band->chan[i],n);
1433			continue;
1434		}
1435
1436		chan = band->chan[i];
1437		nflags = wpi_eeprom_channel_flags(&channels[i]);
1438		error = ieee80211_add_channel(chans, maxchans, nchans,
1439		    chan, 0, channels[i].maxpwr, nflags, bands);
1440		if (error != 0)
1441			break;
1442
1443		/* Save maximum allowed TX power for this channel. */
1444		sc->maxpwr[chan] = channels[i].maxpwr;
1445
1446		DPRINTF(sc, WPI_DEBUG_EEPROM,
1447		    "adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
1448		    chan, channels[i].flags, sc->maxpwr[chan], *nchans);
1449	}
1450}
1451
1452/**
1453 * Read the eeprom to find out what channels are valid for the given
1454 * band and update net80211 with what we find.
1455 */
1456static int
1457wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n)
1458{
1459	struct ieee80211com *ic = &sc->sc_ic;
1460	const struct wpi_chan_band *band = &wpi_bands[n];
1461	int error;
1462
1463	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1464
1465	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1466	    band->nchan * sizeof (struct wpi_eeprom_chan));
1467	if (error != 0) {
1468		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1469		return error;
1470	}
1471
1472	wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
1473	    ic->ic_channels);
1474
1475	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1476
1477	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1478
1479	return 0;
1480}
1481
1482static struct wpi_eeprom_chan *
1483wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1484{
1485	int i, j;
1486
1487	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1488		for (i = 0; i < wpi_bands[j].nchan; i++)
1489			if (wpi_bands[j].chan[i] == c->ic_ieee &&
1490			    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
1491				return &sc->eeprom_channels[j][i];
1492
1493	return NULL;
1494}
1495
1496static void
1497wpi_getradiocaps(struct ieee80211com *ic,
1498    int maxchans, int *nchans, struct ieee80211_channel chans[])
1499{
1500	struct wpi_softc *sc = ic->ic_softc;
1501	int i;
1502
1503	/* Parse the list of authorized channels. */
1504	for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++)
1505		wpi_read_eeprom_band(sc, i, maxchans, nchans, chans);
1506}
1507
1508/*
1509 * Enforce flags read from EEPROM.
1510 */
1511static int
1512wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1513    int nchan, struct ieee80211_channel chans[])
1514{
1515	struct wpi_softc *sc = ic->ic_softc;
1516	int i;
1517
1518	for (i = 0; i < nchan; i++) {
1519		struct ieee80211_channel *c = &chans[i];
1520		struct wpi_eeprom_chan *channel;
1521
1522		channel = wpi_find_eeprom_channel(sc, c);
1523		if (channel == NULL) {
1524			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1525			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1526			return EINVAL;
1527		}
1528		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1529	}
1530
1531	return 0;
1532}
1533
1534static int
1535wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n)
1536{
1537	struct wpi_power_group *group = &sc->groups[n];
1538	struct wpi_eeprom_group rgroup;
1539	int i, error;
1540
1541	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1542
1543	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1544	    &rgroup, sizeof rgroup)) != 0) {
1545		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1546		return error;
1547	}
1548
1549	/* Save TX power group information. */
1550	group->chan   = rgroup.chan;
1551	group->maxpwr = rgroup.maxpwr;
1552	/* Retrieve temperature at which the samples were taken. */
1553	group->temp   = (int16_t)le16toh(rgroup.temp);
1554
1555	DPRINTF(sc, WPI_DEBUG_EEPROM,
1556	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1557	    group->maxpwr, group->temp);
1558
1559	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1560		group->samples[i].index = rgroup.samples[i].index;
1561		group->samples[i].power = rgroup.samples[i].power;
1562
1563		DPRINTF(sc, WPI_DEBUG_EEPROM,
1564		    "\tsample %d: index=%d power=%d\n", i,
1565		    group->samples[i].index, group->samples[i].power);
1566	}
1567
1568	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1569
1570	return 0;
1571}
1572
1573static __inline uint8_t
1574wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1575{
1576	uint8_t newid = WPI_ID_IBSS_MIN;
1577
1578	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1579		if ((sc->nodesmsk & (1 << newid)) == 0) {
1580			sc->nodesmsk |= 1 << newid;
1581			return newid;
1582		}
1583	}
1584
1585	return WPI_ID_UNDEFINED;
1586}
1587
1588static __inline uint8_t
1589wpi_add_node_entry_sta(struct wpi_softc *sc)
1590{
1591	sc->nodesmsk |= 1 << WPI_ID_BSS;
1592
1593	return WPI_ID_BSS;
1594}
1595
1596static __inline int
1597wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1598{
1599	if (id == WPI_ID_UNDEFINED)
1600		return 0;
1601
1602	return (sc->nodesmsk >> id) & 1;
1603}
1604
1605static __inline void
1606wpi_clear_node_table(struct wpi_softc *sc)
1607{
1608	sc->nodesmsk = 0;
1609}
1610
1611static __inline void
1612wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1613{
1614	sc->nodesmsk &= ~(1 << id);
1615}
1616
1617static struct ieee80211_node *
1618wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1619{
1620	struct wpi_node *wn;
1621
1622	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1623	    M_NOWAIT | M_ZERO);
1624
1625	if (wn == NULL)
1626		return NULL;
1627
1628	wn->id = WPI_ID_UNDEFINED;
1629
1630	return &wn->ni;
1631}
1632
1633static void
1634wpi_node_free(struct ieee80211_node *ni)
1635{
1636	struct wpi_softc *sc = ni->ni_ic->ic_softc;
1637	struct wpi_node *wn = WPI_NODE(ni);
1638
1639	if (wn->id != WPI_ID_UNDEFINED) {
1640		WPI_NT_LOCK(sc);
1641		if (wpi_check_node_entry(sc, wn->id)) {
1642			wpi_del_node_entry(sc, wn->id);
1643			wpi_del_node(sc, ni);
1644		}
1645		WPI_NT_UNLOCK(sc);
1646	}
1647
1648	sc->sc_node_free(ni);
1649}
1650
1651static __inline int
1652wpi_check_bss_filter(struct wpi_softc *sc)
1653{
1654	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1655}
1656
1657static void
1658wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1659    const struct ieee80211_rx_stats *rxs,
1660    int rssi, int nf)
1661{
1662	struct ieee80211vap *vap = ni->ni_vap;
1663	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1664	struct wpi_vap *wvp = WPI_VAP(vap);
1665	uint64_t ni_tstamp, rx_tstamp;
1666
1667	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1668
1669	if (vap->iv_state == IEEE80211_S_RUN &&
1670	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1671	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1672		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1673		rx_tstamp = le64toh(sc->rx_tstamp);
1674
1675		if (ni_tstamp >= rx_tstamp) {
1676			DPRINTF(sc, WPI_DEBUG_STATE,
1677			    "ibss merge, tsf %ju tstamp %ju\n",
1678			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1679			(void) ieee80211_ibss_merge(ni);
1680		}
1681	}
1682}
1683
1684static void
1685wpi_restore_node(void *arg, struct ieee80211_node *ni)
1686{
1687	struct wpi_softc *sc = arg;
1688	struct wpi_node *wn = WPI_NODE(ni);
1689	int error;
1690
1691	WPI_NT_LOCK(sc);
1692	if (wn->id != WPI_ID_UNDEFINED) {
1693		wn->id = WPI_ID_UNDEFINED;
1694		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1695			device_printf(sc->sc_dev,
1696			    "%s: could not add IBSS node, error %d\n",
1697			    __func__, error);
1698		}
1699	}
1700	WPI_NT_UNLOCK(sc);
1701}
1702
1703static void
1704wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1705{
1706	struct ieee80211com *ic = &sc->sc_ic;
1707
1708	/* Set group keys once. */
1709	WPI_NT_LOCK(sc);
1710	wvp->wv_gtk = 0;
1711	WPI_NT_UNLOCK(sc);
1712
1713	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1714	ieee80211_crypto_reload_keys(ic);
1715}
1716
1717/**
1718 * Called by net80211 when ever there is a change to 80211 state machine
1719 */
1720static int
1721wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1722{
1723	struct wpi_vap *wvp = WPI_VAP(vap);
1724	struct ieee80211com *ic = vap->iv_ic;
1725	struct wpi_softc *sc = ic->ic_softc;
1726	int error = 0;
1727
1728	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1729
1730	WPI_TXQ_LOCK(sc);
1731	if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1732		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1733		WPI_TXQ_UNLOCK(sc);
1734
1735		return ENXIO;
1736	}
1737	WPI_TXQ_UNLOCK(sc);
1738
1739	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1740		ieee80211_state_name[vap->iv_state],
1741		ieee80211_state_name[nstate]);
1742
1743	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1744		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1745			device_printf(sc->sc_dev,
1746			    "%s: could not set power saving level\n",
1747			    __func__);
1748			return error;
1749		}
1750
1751		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1752	}
1753
1754	switch (nstate) {
1755	case IEEE80211_S_SCAN:
1756		WPI_RXON_LOCK(sc);
1757		if (wpi_check_bss_filter(sc) != 0) {
1758			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1759			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1760				device_printf(sc->sc_dev,
1761				    "%s: could not send RXON\n", __func__);
1762			}
1763		}
1764		WPI_RXON_UNLOCK(sc);
1765		break;
1766
1767	case IEEE80211_S_ASSOC:
1768		if (vap->iv_state != IEEE80211_S_RUN)
1769			break;
1770		/* FALLTHROUGH */
1771	case IEEE80211_S_AUTH:
1772		/*
1773		 * NB: do not optimize AUTH -> AUTH state transmission -
1774		 * this will break powersave with non-QoS AP!
1775		 */
1776
1777		/*
1778		 * The node must be registered in the firmware before auth.
1779		 * Also the associd must be cleared on RUN -> ASSOC
1780		 * transitions.
1781		 */
1782		if ((error = wpi_auth(sc, vap)) != 0) {
1783			device_printf(sc->sc_dev,
1784			    "%s: could not move to AUTH state, error %d\n",
1785			    __func__, error);
1786		}
1787		break;
1788
1789	case IEEE80211_S_RUN:
1790		/*
1791		 * RUN -> RUN transition:
1792		 * STA mode: Just restart the timers.
1793		 * IBSS mode: Process IBSS merge.
1794		 */
1795		if (vap->iv_state == IEEE80211_S_RUN) {
1796			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1797				WPI_RXON_LOCK(sc);
1798				wpi_calib_timeout(sc);
1799				WPI_RXON_UNLOCK(sc);
1800				break;
1801			} else {
1802				/*
1803				 * Drop the BSS_FILTER bit
1804				 * (there is no another way to change bssid).
1805				 */
1806				WPI_RXON_LOCK(sc);
1807				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1808				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1809					device_printf(sc->sc_dev,
1810					    "%s: could not send RXON\n",
1811					    __func__);
1812				}
1813				WPI_RXON_UNLOCK(sc);
1814
1815				/* Restore all what was lost. */
1816				wpi_restore_node_table(sc, wvp);
1817
1818				/* XXX set conditionally? */
1819				wpi_updateedca(ic);
1820			}
1821		}
1822
1823		/*
1824		 * !RUN -> RUN requires setting the association id
1825		 * which is done with a firmware cmd.  We also defer
1826		 * starting the timers until that work is done.
1827		 */
1828		if ((error = wpi_run(sc, vap)) != 0) {
1829			device_printf(sc->sc_dev,
1830			    "%s: could not move to RUN state\n", __func__);
1831		}
1832		break;
1833
1834	default:
1835		break;
1836	}
1837	if (error != 0) {
1838		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1839		return error;
1840	}
1841
1842	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1843
1844	return wvp->wv_newstate(vap, nstate, arg);
1845}
1846
1847static void
1848wpi_calib_timeout(void *arg)
1849{
1850	struct wpi_softc *sc = arg;
1851
1852	if (wpi_check_bss_filter(sc) == 0)
1853		return;
1854
1855	wpi_power_calibration(sc);
1856
1857	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1858}
1859
1860static __inline uint8_t
1861rate2plcp(const uint8_t rate)
1862{
1863	switch (rate) {
1864	case 12:	return 0xd;
1865	case 18:	return 0xf;
1866	case 24:	return 0x5;
1867	case 36:	return 0x7;
1868	case 48:	return 0x9;
1869	case 72:	return 0xb;
1870	case 96:	return 0x1;
1871	case 108:	return 0x3;
1872	case 2:		return 10;
1873	case 4:		return 20;
1874	case 11:	return 55;
1875	case 22:	return 110;
1876	default:	return 0;
1877	}
1878}
1879
1880static __inline uint8_t
1881plcp2rate(const uint8_t plcp)
1882{
1883	switch (plcp) {
1884	case 0xd:	return 12;
1885	case 0xf:	return 18;
1886	case 0x5:	return 24;
1887	case 0x7:	return 36;
1888	case 0x9:	return 48;
1889	case 0xb:	return 72;
1890	case 0x1:	return 96;
1891	case 0x3:	return 108;
1892	case 10:	return 2;
1893	case 20:	return 4;
1894	case 55:	return 11;
1895	case 110:	return 22;
1896	default:	return 0;
1897	}
1898}
1899
1900/* Quickly determine if a given rate is CCK or OFDM. */
1901#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1902
1903static void
1904wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1905    struct wpi_rx_data *data)
1906{
1907	struct ieee80211com *ic = &sc->sc_ic;
1908	struct wpi_rx_ring *ring = &sc->rxq;
1909	struct wpi_rx_stat *stat;
1910	struct wpi_rx_head *head;
1911	struct wpi_rx_tail *tail;
1912	struct ieee80211_frame *wh;
1913	struct ieee80211_node *ni;
1914	struct mbuf *m, *m1;
1915	bus_addr_t paddr;
1916	uint32_t flags;
1917	uint16_t len;
1918	int error;
1919
1920	stat = (struct wpi_rx_stat *)(desc + 1);
1921
1922	if (__predict_false(stat->len > WPI_STAT_MAXLEN)) {
1923		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1924		goto fail1;
1925	}
1926
1927	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1928	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1929	len = le16toh(head->len);
1930	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1931	flags = le32toh(tail->flags);
1932
1933	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1934	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1935	    le32toh(desc->len), len, (int8_t)stat->rssi,
1936	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1937
1938	/* Discard frames with a bad FCS early. */
1939	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1940		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1941		    __func__, flags);
1942		goto fail1;
1943	}
1944	/* Discard frames that are too short. */
1945	if (len < sizeof (struct ieee80211_frame_ack)) {
1946		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1947		    __func__, len);
1948		goto fail1;
1949	}
1950
1951	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1952	if (__predict_false(m1 == NULL)) {
1953		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1954		    __func__);
1955		goto fail1;
1956	}
1957	bus_dmamap_unload(ring->data_dmat, data->map);
1958
1959	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1960	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1961	if (__predict_false(error != 0 && error != EFBIG)) {
1962		device_printf(sc->sc_dev,
1963		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1964		m_freem(m1);
1965
1966		/* Try to reload the old mbuf. */
1967		error = bus_dmamap_load(ring->data_dmat, data->map,
1968		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1969		    &paddr, BUS_DMA_NOWAIT);
1970		if (error != 0 && error != EFBIG) {
1971			panic("%s: could not load old RX mbuf", __func__);
1972		}
1973		/* Physical address may have changed. */
1974		ring->desc[ring->cur] = htole32(paddr);
1975		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1976		    BUS_DMASYNC_PREWRITE);
1977		goto fail1;
1978	}
1979
1980	m = data->m;
1981	data->m = m1;
1982	/* Update RX descriptor. */
1983	ring->desc[ring->cur] = htole32(paddr);
1984	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1985	    BUS_DMASYNC_PREWRITE);
1986
1987	/* Finalize mbuf. */
1988	m->m_data = (caddr_t)(head + 1);
1989	m->m_pkthdr.len = m->m_len = len;
1990
1991	/* Grab a reference to the source node. */
1992	wh = mtod(m, struct ieee80211_frame *);
1993
1994	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1995	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
1996		/* Check whether decryption was successful or not. */
1997		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1998			DPRINTF(sc, WPI_DEBUG_RECV,
1999			    "CCMP decryption failed 0x%x\n", flags);
2000			goto fail2;
2001		}
2002		m->m_flags |= M_WEP;
2003	}
2004
2005	if (len >= sizeof(struct ieee80211_frame_min))
2006		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2007	else
2008		ni = NULL;
2009
2010	sc->rx_tstamp = tail->tstamp;
2011
2012	if (ieee80211_radiotap_active(ic)) {
2013		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2014
2015		tap->wr_flags = 0;
2016		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2017			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2018		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2019		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2020		tap->wr_tsft = tail->tstamp;
2021		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2022		tap->wr_rate = plcp2rate(head->plcp);
2023	}
2024
2025	WPI_UNLOCK(sc);
2026
2027	/* Send the frame to the 802.11 layer. */
2028	if (ni != NULL) {
2029		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2030		/* Node is no longer needed. */
2031		ieee80211_free_node(ni);
2032	} else
2033		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2034
2035	WPI_LOCK(sc);
2036
2037	return;
2038
2039fail2:	m_freem(m);
2040
2041fail1:	counter_u64_add(ic->ic_ierrors, 1);
2042}
2043
2044static void
2045wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2046    struct wpi_rx_data *data)
2047{
2048	/* Ignore */
2049}
2050
2051static void
2052wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2053{
2054	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2055	struct wpi_tx_data *data = &ring->data[desc->idx];
2056	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2057	struct mbuf *m;
2058	struct ieee80211_node *ni;
2059	struct ieee80211vap *vap;
2060	uint32_t status = le32toh(stat->status);
2061	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2062
2063	KASSERT(data->ni != NULL, ("no node"));
2064	KASSERT(data->m != NULL, ("no mbuf"));
2065
2066	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2067
2068	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2069	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2070	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2071	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2072
2073	/* Unmap and free mbuf. */
2074	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2075	bus_dmamap_unload(ring->data_dmat, data->map);
2076	m = data->m, data->m = NULL;
2077	ni = data->ni, data->ni = NULL;
2078	vap = ni->ni_vap;
2079
2080	/*
2081	 * Update rate control statistics for the node.
2082	 */
2083	if (status & WPI_TX_STATUS_FAIL) {
2084		ieee80211_ratectl_tx_complete(vap, ni,
2085		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2086	} else
2087		ieee80211_ratectl_tx_complete(vap, ni,
2088		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2089
2090	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2091
2092	WPI_TXQ_STATE_LOCK(sc);
2093	if (--ring->queued > 0)
2094		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2095	else
2096		callout_stop(&sc->tx_timeout);
2097	WPI_TXQ_STATE_UNLOCK(sc);
2098
2099	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2100}
2101
2102/*
2103 * Process a "command done" firmware notification.  This is where we wakeup
2104 * processes waiting for a synchronous command completion.
2105 */
2106static void
2107wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2108{
2109	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2110	struct wpi_tx_data *data;
2111	struct wpi_tx_cmd *cmd;
2112
2113	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2114				   "type %s len %d\n", desc->qid, desc->idx,
2115				   desc->flags, wpi_cmd_str(desc->type),
2116				   le32toh(desc->len));
2117
2118	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2119		return;	/* Not a command ack. */
2120
2121	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2122
2123	data = &ring->data[desc->idx];
2124	cmd = &ring->cmd[desc->idx];
2125
2126	/* If the command was mapped in an mbuf, free it. */
2127	if (data->m != NULL) {
2128		bus_dmamap_sync(ring->data_dmat, data->map,
2129		    BUS_DMASYNC_POSTWRITE);
2130		bus_dmamap_unload(ring->data_dmat, data->map);
2131		m_freem(data->m);
2132		data->m = NULL;
2133	}
2134
2135	wakeup(cmd);
2136
2137	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2138		struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data;
2139
2140		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2141		    BUS_DMASYNC_POSTREAD);
2142
2143		WPI_TXQ_LOCK(sc);
2144		if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) {
2145			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2146			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2147		} else {
2148			sc->sc_update_rx_ring = wpi_update_rx_ring;
2149			sc->sc_update_tx_ring = wpi_update_tx_ring;
2150		}
2151		WPI_TXQ_UNLOCK(sc);
2152	}
2153}
2154
2155static void
2156wpi_notif_intr(struct wpi_softc *sc)
2157{
2158	struct ieee80211com *ic = &sc->sc_ic;
2159	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2160	uint32_t hw;
2161
2162	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2163	    BUS_DMASYNC_POSTREAD);
2164
2165	hw = le32toh(sc->shared->next) & 0xfff;
2166	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2167
2168	while (sc->rxq.cur != hw) {
2169		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2170
2171		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2172		struct wpi_rx_desc *desc;
2173
2174		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2175		    BUS_DMASYNC_POSTREAD);
2176		desc = mtod(data->m, struct wpi_rx_desc *);
2177
2178		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2179		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2180		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2181		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2182
2183		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2184			/* Reply to a command. */
2185			wpi_cmd_done(sc, desc);
2186		}
2187
2188		switch (desc->type) {
2189		case WPI_RX_DONE:
2190			/* An 802.11 frame has been received. */
2191			wpi_rx_done(sc, desc, data);
2192
2193			if (__predict_false(sc->sc_running == 0)) {
2194				/* wpi_stop() was called. */
2195				return;
2196			}
2197
2198			break;
2199
2200		case WPI_TX_DONE:
2201			/* An 802.11 frame has been transmitted. */
2202			wpi_tx_done(sc, desc);
2203			break;
2204
2205		case WPI_RX_STATISTICS:
2206		case WPI_BEACON_STATISTICS:
2207			wpi_rx_statistics(sc, desc, data);
2208			break;
2209
2210		case WPI_BEACON_MISSED:
2211		{
2212			struct wpi_beacon_missed *miss =
2213			    (struct wpi_beacon_missed *)(desc + 1);
2214			uint32_t expected, misses, received, threshold;
2215
2216			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2217			    BUS_DMASYNC_POSTREAD);
2218
2219			misses = le32toh(miss->consecutive);
2220			expected = le32toh(miss->expected);
2221			received = le32toh(miss->received);
2222			threshold = MAX(2, vap->iv_bmissthreshold);
2223
2224			DPRINTF(sc, WPI_DEBUG_BMISS,
2225			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2226			    __func__, misses, le32toh(miss->total), received,
2227			    expected);
2228
2229			if (misses >= threshold ||
2230			    (received == 0 && expected >= threshold)) {
2231				WPI_RXON_LOCK(sc);
2232				if (callout_pending(&sc->scan_timeout)) {
2233					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2234					    0, 1);
2235				}
2236				WPI_RXON_UNLOCK(sc);
2237				if (vap->iv_state == IEEE80211_S_RUN &&
2238				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2239					ieee80211_beacon_miss(ic);
2240			}
2241
2242			break;
2243		}
2244#ifdef WPI_DEBUG
2245		case WPI_BEACON_SENT:
2246		{
2247			struct wpi_tx_stat *stat =
2248			    (struct wpi_tx_stat *)(desc + 1);
2249			uint64_t *tsf = (uint64_t *)(stat + 1);
2250			uint32_t *mode = (uint32_t *)(tsf + 1);
2251
2252			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2253			    BUS_DMASYNC_POSTREAD);
2254
2255			DPRINTF(sc, WPI_DEBUG_BEACON,
2256			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2257			    "duration %u, status %x, tsf %ju, mode %x\n",
2258			    stat->rtsfailcnt, stat->ackfailcnt,
2259			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2260			    le32toh(stat->status), le64toh(*tsf),
2261			    le32toh(*mode));
2262
2263			break;
2264		}
2265#endif
2266		case WPI_UC_READY:
2267		{
2268			struct wpi_ucode_info *uc =
2269			    (struct wpi_ucode_info *)(desc + 1);
2270
2271			/* The microcontroller is ready. */
2272			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2273			    BUS_DMASYNC_POSTREAD);
2274			DPRINTF(sc, WPI_DEBUG_RESET,
2275			    "microcode alive notification version=%d.%d "
2276			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2277			    uc->subtype, le32toh(uc->valid));
2278
2279			if (le32toh(uc->valid) != 1) {
2280				device_printf(sc->sc_dev,
2281				    "microcontroller initialization failed\n");
2282				wpi_stop_locked(sc);
2283				return;
2284			}
2285			/* Save the address of the error log in SRAM. */
2286			sc->errptr = le32toh(uc->errptr);
2287			break;
2288		}
2289		case WPI_STATE_CHANGED:
2290		{
2291			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2292			    BUS_DMASYNC_POSTREAD);
2293
2294			uint32_t *status = (uint32_t *)(desc + 1);
2295
2296			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2297			    le32toh(*status));
2298
2299			if (le32toh(*status) & 1) {
2300				WPI_NT_LOCK(sc);
2301				wpi_clear_node_table(sc);
2302				WPI_NT_UNLOCK(sc);
2303				ieee80211_runtask(ic,
2304				    &sc->sc_radiooff_task);
2305				return;
2306			}
2307			break;
2308		}
2309#ifdef WPI_DEBUG
2310		case WPI_START_SCAN:
2311		{
2312			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2313			    BUS_DMASYNC_POSTREAD);
2314
2315			struct wpi_start_scan *scan =
2316			    (struct wpi_start_scan *)(desc + 1);
2317			DPRINTF(sc, WPI_DEBUG_SCAN,
2318			    "%s: scanning channel %d status %x\n",
2319			    __func__, scan->chan, le32toh(scan->status));
2320
2321			break;
2322		}
2323#endif
2324		case WPI_STOP_SCAN:
2325		{
2326			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2327			    BUS_DMASYNC_POSTREAD);
2328
2329			struct wpi_stop_scan *scan =
2330			    (struct wpi_stop_scan *)(desc + 1);
2331
2332			DPRINTF(sc, WPI_DEBUG_SCAN,
2333			    "scan finished nchan=%d status=%d chan=%d\n",
2334			    scan->nchan, scan->status, scan->chan);
2335
2336			WPI_RXON_LOCK(sc);
2337			callout_stop(&sc->scan_timeout);
2338			WPI_RXON_UNLOCK(sc);
2339			if (scan->status == WPI_SCAN_ABORTED)
2340				ieee80211_cancel_scan(vap);
2341			else
2342				ieee80211_scan_next(vap);
2343			break;
2344		}
2345		}
2346
2347		if (sc->rxq.cur % 8 == 0) {
2348			/* Tell the firmware what we have processed. */
2349			sc->sc_update_rx_ring(sc);
2350		}
2351	}
2352}
2353
2354/*
2355 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2356 * from power-down sleep mode.
2357 */
2358static void
2359wpi_wakeup_intr(struct wpi_softc *sc)
2360{
2361	int qid;
2362
2363	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2364	    "%s: ucode wakeup from power-down sleep\n", __func__);
2365
2366	/* Wakeup RX and TX rings. */
2367	if (sc->rxq.update) {
2368		sc->rxq.update = 0;
2369		wpi_update_rx_ring(sc);
2370	}
2371	WPI_TXQ_LOCK(sc);
2372	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2373		struct wpi_tx_ring *ring = &sc->txq[qid];
2374
2375		if (ring->update) {
2376			ring->update = 0;
2377			wpi_update_tx_ring(sc, ring);
2378		}
2379	}
2380	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2381	WPI_TXQ_UNLOCK(sc);
2382}
2383
2384/*
2385 * This function prints firmware registers
2386 */
2387#ifdef WPI_DEBUG
2388static void
2389wpi_debug_registers(struct wpi_softc *sc)
2390{
2391	size_t i;
2392	static const uint32_t csr_tbl[] = {
2393		WPI_HW_IF_CONFIG,
2394		WPI_INT,
2395		WPI_INT_MASK,
2396		WPI_FH_INT,
2397		WPI_GPIO_IN,
2398		WPI_RESET,
2399		WPI_GP_CNTRL,
2400		WPI_EEPROM,
2401		WPI_EEPROM_GP,
2402		WPI_GIO,
2403		WPI_UCODE_GP1,
2404		WPI_UCODE_GP2,
2405		WPI_GIO_CHICKEN,
2406		WPI_ANA_PLL,
2407		WPI_DBG_HPET_MEM,
2408	};
2409	static const uint32_t prph_tbl[] = {
2410		WPI_APMG_CLK_CTRL,
2411		WPI_APMG_PS,
2412		WPI_APMG_PCI_STT,
2413		WPI_APMG_RFKILL,
2414	};
2415
2416	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2417
2418	for (i = 0; i < nitems(csr_tbl); i++) {
2419		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2420		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2421
2422		if ((i + 1) % 2 == 0)
2423			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2424	}
2425	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2426
2427	if (wpi_nic_lock(sc) == 0) {
2428		for (i = 0; i < nitems(prph_tbl); i++) {
2429			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2430			    wpi_get_prph_string(prph_tbl[i]),
2431			    wpi_prph_read(sc, prph_tbl[i]));
2432
2433			if ((i + 1) % 2 == 0)
2434				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2435		}
2436		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2437		wpi_nic_unlock(sc);
2438	} else {
2439		DPRINTF(sc, WPI_DEBUG_REGISTER,
2440		    "Cannot access internal registers.\n");
2441	}
2442}
2443#endif
2444
2445/*
2446 * Dump the error log of the firmware when a firmware panic occurs.  Although
2447 * we can't debug the firmware because it is neither open source nor free, it
2448 * can help us to identify certain classes of problems.
2449 */
2450static void
2451wpi_fatal_intr(struct wpi_softc *sc)
2452{
2453	struct wpi_fw_dump dump;
2454	uint32_t i, offset, count;
2455
2456	/* Check that the error log address is valid. */
2457	if (sc->errptr < WPI_FW_DATA_BASE ||
2458	    sc->errptr + sizeof (dump) >
2459	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2460		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2461		    sc->errptr);
2462		return;
2463	}
2464	if (wpi_nic_lock(sc) != 0) {
2465		printf("%s: could not read firmware error log\n", __func__);
2466		return;
2467	}
2468	/* Read number of entries in the log. */
2469	count = wpi_mem_read(sc, sc->errptr);
2470	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2471		printf("%s: invalid count field (count = %u)\n", __func__,
2472		    count);
2473		wpi_nic_unlock(sc);
2474		return;
2475	}
2476	/* Skip "count" field. */
2477	offset = sc->errptr + sizeof (uint32_t);
2478	printf("firmware error log (count = %u):\n", count);
2479	for (i = 0; i < count; i++) {
2480		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2481		    sizeof (dump) / sizeof (uint32_t));
2482
2483		printf("  error type = \"%s\" (0x%08X)\n",
2484		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2485		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2486		    dump.desc);
2487		printf("  error data      = 0x%08X\n",
2488		    dump.data);
2489		printf("  branch link     = 0x%08X%08X\n",
2490		    dump.blink[0], dump.blink[1]);
2491		printf("  interrupt link  = 0x%08X%08X\n",
2492		    dump.ilink[0], dump.ilink[1]);
2493		printf("  time            = %u\n", dump.time);
2494
2495		offset += sizeof (dump);
2496	}
2497	wpi_nic_unlock(sc);
2498	/* Dump driver status (TX and RX rings) while we're here. */
2499	printf("driver status:\n");
2500	WPI_TXQ_LOCK(sc);
2501	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2502		struct wpi_tx_ring *ring = &sc->txq[i];
2503		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2504		    i, ring->qid, ring->cur, ring->queued);
2505	}
2506	WPI_TXQ_UNLOCK(sc);
2507	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2508}
2509
2510static void
2511wpi_intr(void *arg)
2512{
2513	struct wpi_softc *sc = arg;
2514	uint32_t r1, r2;
2515
2516	WPI_LOCK(sc);
2517
2518	/* Disable interrupts. */
2519	WPI_WRITE(sc, WPI_INT_MASK, 0);
2520
2521	r1 = WPI_READ(sc, WPI_INT);
2522
2523	if (__predict_false(r1 == 0xffffffff ||
2524			   (r1 & 0xfffffff0) == 0xa5a5a5a0))
2525		goto end;	/* Hardware gone! */
2526
2527	r2 = WPI_READ(sc, WPI_FH_INT);
2528
2529	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2530	    r1, r2);
2531
2532	if (r1 == 0 && r2 == 0)
2533		goto done;	/* Interrupt not for us. */
2534
2535	/* Acknowledge interrupts. */
2536	WPI_WRITE(sc, WPI_INT, r1);
2537	WPI_WRITE(sc, WPI_FH_INT, r2);
2538
2539	if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) {
2540		struct ieee80211com *ic = &sc->sc_ic;
2541
2542		device_printf(sc->sc_dev, "fatal firmware error\n");
2543#ifdef WPI_DEBUG
2544		wpi_debug_registers(sc);
2545#endif
2546		wpi_fatal_intr(sc);
2547		DPRINTF(sc, WPI_DEBUG_HW,
2548		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2549		    "(Hardware Error)");
2550		ieee80211_restart_all(ic);
2551		goto end;
2552	}
2553
2554	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2555	    (r2 & WPI_FH_INT_RX))
2556		wpi_notif_intr(sc);
2557
2558	if (r1 & WPI_INT_ALIVE)
2559		wakeup(sc);	/* Firmware is alive. */
2560
2561	if (r1 & WPI_INT_WAKEUP)
2562		wpi_wakeup_intr(sc);
2563
2564done:
2565	/* Re-enable interrupts. */
2566	if (__predict_true(sc->sc_running))
2567		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2568
2569end:	WPI_UNLOCK(sc);
2570}
2571
2572static void
2573wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac)
2574{
2575	struct wpi_tx_ring *ring;
2576	struct wpi_tx_data *data;
2577	uint8_t cur;
2578
2579	WPI_TXQ_LOCK(sc);
2580	ring = &sc->txq[ac];
2581
2582	while (ring->pending != 0) {
2583		ring->pending--;
2584		cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2585		data = &ring->data[cur];
2586
2587		bus_dmamap_sync(ring->data_dmat, data->map,
2588		    BUS_DMASYNC_POSTWRITE);
2589		bus_dmamap_unload(ring->data_dmat, data->map);
2590		m_freem(data->m);
2591		data->m = NULL;
2592
2593		ieee80211_node_decref(data->ni);
2594		data->ni = NULL;
2595	}
2596
2597	WPI_TXQ_UNLOCK(sc);
2598}
2599
2600static int
2601wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2602{
2603	struct ieee80211_frame *wh;
2604	struct wpi_tx_cmd *cmd;
2605	struct wpi_tx_data *data;
2606	struct wpi_tx_desc *desc;
2607	struct wpi_tx_ring *ring;
2608	struct mbuf *m1;
2609	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2610	uint8_t cur, pad;
2611	uint16_t hdrlen;
2612	int error, i, nsegs, totlen, frag;
2613
2614	WPI_TXQ_LOCK(sc);
2615
2616	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2617
2618	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2619
2620	if (__predict_false(sc->sc_running == 0)) {
2621		/* wpi_stop() was called */
2622		error = ENETDOWN;
2623		goto end;
2624	}
2625
2626	wh = mtod(buf->m, struct ieee80211_frame *);
2627	hdrlen = ieee80211_anyhdrsize(wh);
2628	totlen = buf->m->m_pkthdr.len;
2629	frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG);
2630
2631	if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) {
2632		error = EINVAL;
2633		goto end;
2634	}
2635
2636	if (hdrlen & 3) {
2637		/* First segment length must be a multiple of 4. */
2638		pad = 4 - (hdrlen & 3);
2639	} else
2640		pad = 0;
2641
2642	ring = &sc->txq[buf->ac];
2643	cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2644	desc = &ring->desc[cur];
2645	data = &ring->data[cur];
2646
2647	/* Prepare TX firmware command. */
2648	cmd = &ring->cmd[cur];
2649	cmd->code = buf->code;
2650	cmd->flags = 0;
2651	cmd->qid = ring->qid;
2652	cmd->idx = cur;
2653
2654	memcpy(cmd->data, buf->data, buf->size);
2655
2656	/* Save and trim IEEE802.11 header. */
2657	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2658	m_adj(buf->m, hdrlen);
2659
2660	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2661	    segs, &nsegs, BUS_DMA_NOWAIT);
2662	if (error != 0 && error != EFBIG) {
2663		device_printf(sc->sc_dev,
2664		    "%s: can't map mbuf (error %d)\n", __func__, error);
2665		goto end;
2666	}
2667	if (error != 0) {
2668		/* Too many DMA segments, linearize mbuf. */
2669		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2670		if (m1 == NULL) {
2671			device_printf(sc->sc_dev,
2672			    "%s: could not defrag mbuf\n", __func__);
2673			error = ENOBUFS;
2674			goto end;
2675		}
2676		buf->m = m1;
2677
2678		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2679		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2680		if (__predict_false(error != 0)) {
2681			/* XXX fix this (applicable to the iwn(4) too) */
2682			/*
2683			 * NB: Do not return error;
2684			 * original mbuf does not exist anymore.
2685			 */
2686			device_printf(sc->sc_dev,
2687			    "%s: can't map mbuf (error %d)\n", __func__,
2688			    error);
2689			if (ring->qid < WPI_CMD_QUEUE_NUM) {
2690				if_inc_counter(buf->ni->ni_vap->iv_ifp,
2691				    IFCOUNTER_OERRORS, 1);
2692				if (!frag)
2693					ieee80211_free_node(buf->ni);
2694			}
2695			m_freem(buf->m);
2696			error = 0;
2697			goto end;
2698		}
2699	}
2700
2701	KASSERT(nsegs < WPI_MAX_SCATTER,
2702	    ("too many DMA segments, nsegs (%d) should be less than %d",
2703	     nsegs, WPI_MAX_SCATTER));
2704
2705	data->m = buf->m;
2706	data->ni = buf->ni;
2707
2708	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2709	    __func__, ring->qid, cur, totlen, nsegs);
2710
2711	/* Fill TX descriptor. */
2712	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2713	/* First DMA segment is used by the TX command. */
2714	desc->segs[0].addr = htole32(data->cmd_paddr);
2715	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2716	/* Other DMA segments are for data payload. */
2717	seg = &segs[0];
2718	for (i = 1; i <= nsegs; i++) {
2719		desc->segs[i].addr = htole32(seg->ds_addr);
2720		desc->segs[i].len  = htole32(seg->ds_len);
2721		seg++;
2722	}
2723
2724	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2725	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2726	    BUS_DMASYNC_PREWRITE);
2727	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2728	    BUS_DMASYNC_PREWRITE);
2729
2730	ring->pending += 1;
2731
2732	if (!frag) {
2733		if (ring->qid < WPI_CMD_QUEUE_NUM) {
2734			WPI_TXQ_STATE_LOCK(sc);
2735			ring->queued += ring->pending;
2736			callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout,
2737			    sc);
2738			WPI_TXQ_STATE_UNLOCK(sc);
2739		}
2740
2741		/* Kick TX ring. */
2742		ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2743		ring->pending = 0;
2744		sc->sc_update_tx_ring(sc, ring);
2745	} else
2746		ieee80211_node_incref(data->ni);
2747
2748end:	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
2749	    __func__);
2750
2751	WPI_TXQ_UNLOCK(sc);
2752
2753	return (error);
2754}
2755
2756/*
2757 * Construct the data packet for a transmit buffer.
2758 */
2759static int
2760wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2761{
2762	const struct ieee80211_txparam *tp;
2763	struct ieee80211vap *vap = ni->ni_vap;
2764	struct ieee80211com *ic = ni->ni_ic;
2765	struct wpi_node *wn = WPI_NODE(ni);
2766	struct ieee80211_channel *chan;
2767	struct ieee80211_frame *wh;
2768	struct ieee80211_key *k = NULL;
2769	struct wpi_buf tx_data;
2770	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2771	uint32_t flags;
2772	uint16_t ac, qos;
2773	uint8_t tid, type, rate;
2774	int swcrypt, ismcast, totlen;
2775
2776	wh = mtod(m, struct ieee80211_frame *);
2777	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2778	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2779	swcrypt = 1;
2780
2781	/* Select EDCA Access Category and TX ring for this frame. */
2782	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2783		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2784		tid = qos & IEEE80211_QOS_TID;
2785	} else {
2786		qos = 0;
2787		tid = 0;
2788	}
2789	ac = M_WME_GETAC(m);
2790
2791	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2792		ni->ni_chan : ic->ic_curchan;
2793	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2794
2795	/* Choose a TX rate index. */
2796	if (type == IEEE80211_FC0_TYPE_MGT)
2797		rate = tp->mgmtrate;
2798	else if (ismcast)
2799		rate = tp->mcastrate;
2800	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2801		rate = tp->ucastrate;
2802	else if (m->m_flags & M_EAPOL)
2803		rate = tp->mgmtrate;
2804	else {
2805		/* XXX pass pktlen */
2806		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2807		rate = ni->ni_txrate;
2808	}
2809
2810	/* Encrypt the frame if need be. */
2811	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2812		/* Retrieve key for TX. */
2813		k = ieee80211_crypto_encap(ni, m);
2814		if (k == NULL)
2815			return (ENOBUFS);
2816
2817		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2818
2819		/* 802.11 header may have moved. */
2820		wh = mtod(m, struct ieee80211_frame *);
2821	}
2822	totlen = m->m_pkthdr.len;
2823
2824	if (ieee80211_radiotap_active_vap(vap)) {
2825		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2826
2827		tap->wt_flags = 0;
2828		tap->wt_rate = rate;
2829		if (k != NULL)
2830			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2831		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2832			tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2833
2834		ieee80211_radiotap_tx(vap, m);
2835	}
2836
2837	flags = 0;
2838	if (!ismcast) {
2839		/* Unicast frame, check if an ACK is expected. */
2840		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2841		    IEEE80211_QOS_ACKPOLICY_NOACK)
2842			flags |= WPI_TX_NEED_ACK;
2843	}
2844
2845	if (!IEEE80211_QOS_HAS_SEQ(wh))
2846		flags |= WPI_TX_AUTO_SEQ;
2847	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2848		flags |= WPI_TX_MORE_FRAG;
2849
2850	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2851	if (!ismcast) {
2852		/* NB: Group frames are sent using CCK in 802.11b/g. */
2853		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2854			flags |= WPI_TX_NEED_RTS;
2855		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2856		    WPI_RATE_IS_OFDM(rate)) {
2857			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2858				flags |= WPI_TX_NEED_CTS;
2859			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2860				flags |= WPI_TX_NEED_RTS;
2861		}
2862
2863		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2864			flags |= WPI_TX_FULL_TXOP;
2865	}
2866
2867	memset(tx, 0, sizeof (struct wpi_cmd_data));
2868	if (type == IEEE80211_FC0_TYPE_MGT) {
2869		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2870
2871		/* Tell HW to set timestamp in probe responses. */
2872		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2873			flags |= WPI_TX_INSERT_TSTAMP;
2874		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2875		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2876			tx->timeout = htole16(3);
2877		else
2878			tx->timeout = htole16(2);
2879	}
2880
2881	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2882		tx->id = WPI_ID_BROADCAST;
2883	else {
2884		if (wn->id == WPI_ID_UNDEFINED) {
2885			device_printf(sc->sc_dev,
2886			    "%s: undefined node id\n", __func__);
2887			return (EINVAL);
2888		}
2889
2890		tx->id = wn->id;
2891	}
2892
2893	if (!swcrypt) {
2894		switch (k->wk_cipher->ic_cipher) {
2895		case IEEE80211_CIPHER_AES_CCM:
2896			tx->security = WPI_CIPHER_CCMP;
2897			break;
2898
2899		default:
2900			break;
2901		}
2902
2903		memcpy(tx->key, k->wk_key, k->wk_keylen);
2904	}
2905
2906	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
2907		struct mbuf *next = m->m_nextpkt;
2908
2909		tx->lnext = htole16(next->m_pkthdr.len);
2910		tx->fnext = htole32(tx->security |
2911				    (flags & WPI_TX_NEED_ACK) |
2912				    WPI_NEXT_STA_ID(tx->id));
2913	}
2914
2915	tx->len = htole16(totlen);
2916	tx->flags = htole32(flags);
2917	tx->plcp = rate2plcp(rate);
2918	tx->tid = tid;
2919	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2920	tx->ofdm_mask = 0xff;
2921	tx->cck_mask = 0x0f;
2922	tx->rts_ntries = 7;
2923	tx->data_ntries = tp->maxretry;
2924
2925	tx_data.ni = ni;
2926	tx_data.m = m;
2927	tx_data.size = sizeof(struct wpi_cmd_data);
2928	tx_data.code = WPI_CMD_TX_DATA;
2929	tx_data.ac = ac;
2930
2931	return wpi_cmd2(sc, &tx_data);
2932}
2933
2934static int
2935wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2936    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2937{
2938	struct ieee80211vap *vap = ni->ni_vap;
2939	struct ieee80211_key *k = NULL;
2940	struct ieee80211_frame *wh;
2941	struct wpi_buf tx_data;
2942	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2943	uint32_t flags;
2944	uint8_t ac, type, rate;
2945	int swcrypt, totlen;
2946
2947	wh = mtod(m, struct ieee80211_frame *);
2948	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2949	swcrypt = 1;
2950
2951	ac = params->ibp_pri & 3;
2952
2953	/* Choose a TX rate index. */
2954	rate = params->ibp_rate0;
2955
2956	flags = 0;
2957	if (!IEEE80211_QOS_HAS_SEQ(wh))
2958		flags |= WPI_TX_AUTO_SEQ;
2959	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2960		flags |= WPI_TX_NEED_ACK;
2961	if (params->ibp_flags & IEEE80211_BPF_RTS)
2962		flags |= WPI_TX_NEED_RTS;
2963	if (params->ibp_flags & IEEE80211_BPF_CTS)
2964		flags |= WPI_TX_NEED_CTS;
2965	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2966		flags |= WPI_TX_FULL_TXOP;
2967
2968	/* Encrypt the frame if need be. */
2969	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2970		/* Retrieve key for TX. */
2971		k = ieee80211_crypto_encap(ni, m);
2972		if (k == NULL)
2973			return (ENOBUFS);
2974
2975		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2976
2977		/* 802.11 header may have moved. */
2978		wh = mtod(m, struct ieee80211_frame *);
2979	}
2980	totlen = m->m_pkthdr.len;
2981
2982	if (ieee80211_radiotap_active_vap(vap)) {
2983		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2984
2985		tap->wt_flags = 0;
2986		tap->wt_rate = rate;
2987		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2988			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2989
2990		ieee80211_radiotap_tx(vap, m);
2991	}
2992
2993	memset(tx, 0, sizeof (struct wpi_cmd_data));
2994	if (type == IEEE80211_FC0_TYPE_MGT) {
2995		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2996
2997		/* Tell HW to set timestamp in probe responses. */
2998		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2999			flags |= WPI_TX_INSERT_TSTAMP;
3000		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3001		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3002			tx->timeout = htole16(3);
3003		else
3004			tx->timeout = htole16(2);
3005	}
3006
3007	if (!swcrypt) {
3008		switch (k->wk_cipher->ic_cipher) {
3009		case IEEE80211_CIPHER_AES_CCM:
3010			tx->security = WPI_CIPHER_CCMP;
3011			break;
3012
3013		default:
3014			break;
3015		}
3016
3017		memcpy(tx->key, k->wk_key, k->wk_keylen);
3018	}
3019
3020	tx->len = htole16(totlen);
3021	tx->flags = htole32(flags);
3022	tx->plcp = rate2plcp(rate);
3023	tx->id = WPI_ID_BROADCAST;
3024	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3025	tx->rts_ntries = params->ibp_try1;
3026	tx->data_ntries = params->ibp_try0;
3027
3028	tx_data.ni = ni;
3029	tx_data.m = m;
3030	tx_data.size = sizeof(struct wpi_cmd_data);
3031	tx_data.code = WPI_CMD_TX_DATA;
3032	tx_data.ac = ac;
3033
3034	return wpi_cmd2(sc, &tx_data);
3035}
3036
3037static __inline int
3038wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac)
3039{
3040	struct wpi_tx_ring *ring = &sc->txq[ac];
3041	int retval;
3042
3043	WPI_TXQ_STATE_LOCK(sc);
3044	retval = WPI_TX_RING_HIMARK - ring->queued;
3045	WPI_TXQ_STATE_UNLOCK(sc);
3046
3047	return retval;
3048}
3049
3050static int
3051wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3052    const struct ieee80211_bpf_params *params)
3053{
3054	struct ieee80211com *ic = ni->ni_ic;
3055	struct wpi_softc *sc = ic->ic_softc;
3056	uint16_t ac;
3057	int error = 0;
3058
3059	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3060
3061	ac = M_WME_GETAC(m);
3062
3063	WPI_TX_LOCK(sc);
3064
3065	/* NB: no fragments here */
3066	if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) {
3067		error = sc->sc_running ? ENOBUFS : ENETDOWN;
3068		goto unlock;
3069	}
3070
3071	if (params == NULL) {
3072		/*
3073		 * Legacy path; interpret frame contents to decide
3074		 * precisely how to send the frame.
3075		 */
3076		error = wpi_tx_data(sc, m, ni);
3077	} else {
3078		/*
3079		 * Caller supplied explicit parameters to use in
3080		 * sending the frame.
3081		 */
3082		error = wpi_tx_data_raw(sc, m, ni, params);
3083	}
3084
3085unlock:	WPI_TX_UNLOCK(sc);
3086
3087	if (error != 0) {
3088		m_freem(m);
3089		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3090
3091		return error;
3092	}
3093
3094	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3095
3096	return 0;
3097}
3098
3099static int
3100wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3101{
3102	struct wpi_softc *sc = ic->ic_softc;
3103	struct ieee80211_node *ni;
3104	struct mbuf *mnext;
3105	uint16_t ac;
3106	int error, nmbufs;
3107
3108	WPI_TX_LOCK(sc);
3109	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3110
3111	/* Check if interface is up & running. */
3112	if (__predict_false(sc->sc_running == 0)) {
3113		error = ENXIO;
3114		goto unlock;
3115	}
3116
3117	nmbufs = 1;
3118	for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt)
3119		nmbufs++;
3120
3121	/* Check for available space. */
3122	ac = M_WME_GETAC(m);
3123	if (wpi_tx_ring_free_space(sc, ac) < nmbufs) {
3124		error = ENOBUFS;
3125		goto unlock;
3126	}
3127
3128	error = 0;
3129	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3130	do {
3131		mnext = m->m_nextpkt;
3132		if (wpi_tx_data(sc, m, ni) != 0) {
3133			if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS,
3134			    nmbufs);
3135			wpi_free_txfrags(sc, ac);
3136			ieee80211_free_mbuf(m);
3137			ieee80211_free_node(ni);
3138			break;
3139		}
3140	} while((m = mnext) != NULL);
3141
3142	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3143
3144unlock:	WPI_TX_UNLOCK(sc);
3145
3146	return (error);
3147}
3148
3149static void
3150wpi_watchdog_rfkill(void *arg)
3151{
3152	struct wpi_softc *sc = arg;
3153	struct ieee80211com *ic = &sc->sc_ic;
3154
3155	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3156
3157	/* No need to lock firmware memory. */
3158	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3159		/* Radio kill switch is still off. */
3160		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3161		    sc);
3162	} else
3163		ieee80211_runtask(ic, &sc->sc_radioon_task);
3164}
3165
3166static void
3167wpi_scan_timeout(void *arg)
3168{
3169	struct wpi_softc *sc = arg;
3170	struct ieee80211com *ic = &sc->sc_ic;
3171
3172	ic_printf(ic, "scan timeout\n");
3173	ieee80211_restart_all(ic);
3174}
3175
3176static void
3177wpi_tx_timeout(void *arg)
3178{
3179	struct wpi_softc *sc = arg;
3180	struct ieee80211com *ic = &sc->sc_ic;
3181
3182	ic_printf(ic, "device timeout\n");
3183	ieee80211_restart_all(ic);
3184}
3185
3186static void
3187wpi_parent(struct ieee80211com *ic)
3188{
3189	struct wpi_softc *sc = ic->ic_softc;
3190	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3191
3192	if (ic->ic_nrunning > 0) {
3193		if (wpi_init(sc) == 0) {
3194			ieee80211_notify_radio(ic, 1);
3195			ieee80211_start_all(ic);
3196		} else {
3197			ieee80211_notify_radio(ic, 0);
3198			ieee80211_stop(vap);
3199		}
3200	} else {
3201		ieee80211_notify_radio(ic, 0);
3202		wpi_stop(sc);
3203	}
3204}
3205
3206/*
3207 * Send a command to the firmware.
3208 */
3209static int
3210wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size,
3211    int async)
3212{
3213	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3214	struct wpi_tx_desc *desc;
3215	struct wpi_tx_data *data;
3216	struct wpi_tx_cmd *cmd;
3217	struct mbuf *m;
3218	bus_addr_t paddr;
3219	uint16_t totlen;
3220	int error;
3221
3222	WPI_TXQ_LOCK(sc);
3223
3224	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3225
3226	if (__predict_false(sc->sc_running == 0)) {
3227		/* wpi_stop() was called */
3228		if (code == WPI_CMD_SCAN)
3229			error = ENETDOWN;
3230		else
3231			error = 0;
3232
3233		goto fail;
3234	}
3235
3236	if (async == 0)
3237		WPI_LOCK_ASSERT(sc);
3238
3239	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n",
3240	    __func__, wpi_cmd_str(code), size, async);
3241
3242	desc = &ring->desc[ring->cur];
3243	data = &ring->data[ring->cur];
3244	totlen = 4 + size;
3245
3246	if (size > sizeof cmd->data) {
3247		/* Command is too large to fit in a descriptor. */
3248		if (totlen > MCLBYTES) {
3249			error = EINVAL;
3250			goto fail;
3251		}
3252		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3253		if (m == NULL) {
3254			error = ENOMEM;
3255			goto fail;
3256		}
3257		cmd = mtod(m, struct wpi_tx_cmd *);
3258		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3259		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3260		if (error != 0) {
3261			m_freem(m);
3262			goto fail;
3263		}
3264		data->m = m;
3265	} else {
3266		cmd = &ring->cmd[ring->cur];
3267		paddr = data->cmd_paddr;
3268	}
3269
3270	cmd->code = code;
3271	cmd->flags = 0;
3272	cmd->qid = ring->qid;
3273	cmd->idx = ring->cur;
3274	memcpy(cmd->data, buf, size);
3275
3276	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3277	desc->segs[0].addr = htole32(paddr);
3278	desc->segs[0].len  = htole32(totlen);
3279
3280	if (size > sizeof cmd->data) {
3281		bus_dmamap_sync(ring->data_dmat, data->map,
3282		    BUS_DMASYNC_PREWRITE);
3283	} else {
3284		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3285		    BUS_DMASYNC_PREWRITE);
3286	}
3287	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3288	    BUS_DMASYNC_PREWRITE);
3289
3290	/* Kick command ring. */
3291	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3292	sc->sc_update_tx_ring(sc, ring);
3293
3294	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3295
3296	WPI_TXQ_UNLOCK(sc);
3297
3298	return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3299
3300fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3301
3302	WPI_TXQ_UNLOCK(sc);
3303
3304	return error;
3305}
3306
3307/*
3308 * Configure HW multi-rate retries.
3309 */
3310static int
3311wpi_mrr_setup(struct wpi_softc *sc)
3312{
3313	struct ieee80211com *ic = &sc->sc_ic;
3314	struct wpi_mrr_setup mrr;
3315	uint8_t i;
3316	int error;
3317
3318	/* CCK rates (not used with 802.11a). */
3319	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3320		mrr.rates[i].flags = 0;
3321		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3322		/* Fallback to the immediate lower CCK rate (if any.) */
3323		mrr.rates[i].next =
3324		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3325		/* Try twice at this rate before falling back to "next". */
3326		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3327	}
3328	/* OFDM rates (not used with 802.11b). */
3329	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3330		mrr.rates[i].flags = 0;
3331		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3332		/* Fallback to the immediate lower rate (if any.) */
3333		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3334		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3335		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3336			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3337		    i - 1;
3338		/* Try twice at this rate before falling back to "next". */
3339		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3340	}
3341	/* Setup MRR for control frames. */
3342	mrr.which = htole32(WPI_MRR_CTL);
3343	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3344	if (error != 0) {
3345		device_printf(sc->sc_dev,
3346		    "could not setup MRR for control frames\n");
3347		return error;
3348	}
3349	/* Setup MRR for data frames. */
3350	mrr.which = htole32(WPI_MRR_DATA);
3351	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3352	if (error != 0) {
3353		device_printf(sc->sc_dev,
3354		    "could not setup MRR for data frames\n");
3355		return error;
3356	}
3357	return 0;
3358}
3359
3360static int
3361wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3362{
3363	struct ieee80211com *ic = ni->ni_ic;
3364	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3365	struct wpi_node *wn = WPI_NODE(ni);
3366	struct wpi_node_info node;
3367	int error;
3368
3369	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3370
3371	if (wn->id == WPI_ID_UNDEFINED)
3372		return EINVAL;
3373
3374	memset(&node, 0, sizeof node);
3375	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3376	node.id = wn->id;
3377	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3378	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3379	node.action = htole32(WPI_ACTION_SET_RATE);
3380	node.antenna = WPI_ANTENNA_BOTH;
3381
3382	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3383	    wn->id, ether_sprintf(ni->ni_macaddr));
3384
3385	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3386	if (error != 0) {
3387		device_printf(sc->sc_dev,
3388		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3389		    error);
3390		return error;
3391	}
3392
3393	if (wvp->wv_gtk != 0) {
3394		error = wpi_set_global_keys(ni);
3395		if (error != 0) {
3396			device_printf(sc->sc_dev,
3397			    "%s: error while setting global keys\n", __func__);
3398			return ENXIO;
3399		}
3400	}
3401
3402	return 0;
3403}
3404
3405/*
3406 * Broadcast node is used to send group-addressed and management frames.
3407 */
3408static int
3409wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3410{
3411	struct ieee80211com *ic = &sc->sc_ic;
3412	struct wpi_node_info node;
3413
3414	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3415
3416	memset(&node, 0, sizeof node);
3417	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3418	node.id = WPI_ID_BROADCAST;
3419	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3420	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3421	node.action = htole32(WPI_ACTION_SET_RATE);
3422	node.antenna = WPI_ANTENNA_BOTH;
3423
3424	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3425
3426	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3427}
3428
3429static int
3430wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3431{
3432	struct wpi_node *wn = WPI_NODE(ni);
3433	int error;
3434
3435	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3436
3437	wn->id = wpi_add_node_entry_sta(sc);
3438
3439	if ((error = wpi_add_node(sc, ni)) != 0) {
3440		wpi_del_node_entry(sc, wn->id);
3441		wn->id = WPI_ID_UNDEFINED;
3442		return error;
3443	}
3444
3445	return 0;
3446}
3447
3448static int
3449wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3450{
3451	struct wpi_node *wn = WPI_NODE(ni);
3452	int error;
3453
3454	KASSERT(wn->id == WPI_ID_UNDEFINED,
3455	    ("the node %d was added before", wn->id));
3456
3457	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3458
3459	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3460		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3461		return ENOMEM;
3462	}
3463
3464	if ((error = wpi_add_node(sc, ni)) != 0) {
3465		wpi_del_node_entry(sc, wn->id);
3466		wn->id = WPI_ID_UNDEFINED;
3467		return error;
3468	}
3469
3470	return 0;
3471}
3472
3473static void
3474wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3475{
3476	struct wpi_node *wn = WPI_NODE(ni);
3477	struct wpi_cmd_del_node node;
3478	int error;
3479
3480	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3481
3482	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3483
3484	memset(&node, 0, sizeof node);
3485	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3486	node.count = 1;
3487
3488	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3489	    wn->id, ether_sprintf(ni->ni_macaddr));
3490
3491	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3492	if (error != 0) {
3493		device_printf(sc->sc_dev,
3494		    "%s: could not delete node %u, error %d\n", __func__,
3495		    wn->id, error);
3496	}
3497}
3498
3499static int
3500wpi_updateedca(struct ieee80211com *ic)
3501{
3502#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3503	struct wpi_softc *sc = ic->ic_softc;
3504	struct wpi_edca_params cmd;
3505	int aci, error;
3506
3507	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3508
3509	memset(&cmd, 0, sizeof cmd);
3510	cmd.flags = htole32(WPI_EDCA_UPDATE);
3511	for (aci = 0; aci < WME_NUM_AC; aci++) {
3512		const struct wmeParams *ac =
3513		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3514		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3515		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3516		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3517		cmd.ac[aci].txoplimit =
3518		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3519
3520		DPRINTF(sc, WPI_DEBUG_EDCA,
3521		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3522		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3523		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3524		    cmd.ac[aci].txoplimit);
3525	}
3526	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3527
3528	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3529
3530	return error;
3531#undef WPI_EXP2
3532}
3533
3534static void
3535wpi_set_promisc(struct wpi_softc *sc)
3536{
3537	struct ieee80211com *ic = &sc->sc_ic;
3538	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3539	uint32_t promisc_filter;
3540
3541	promisc_filter = WPI_FILTER_CTL;
3542	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3543		promisc_filter |= WPI_FILTER_PROMISC;
3544
3545	if (ic->ic_promisc > 0)
3546		sc->rxon.filter |= htole32(promisc_filter);
3547	else
3548		sc->rxon.filter &= ~htole32(promisc_filter);
3549}
3550
3551static void
3552wpi_update_promisc(struct ieee80211com *ic)
3553{
3554	struct wpi_softc *sc = ic->ic_softc;
3555
3556	WPI_LOCK(sc);
3557	if (sc->sc_running == 0) {
3558		WPI_UNLOCK(sc);
3559		return;
3560	}
3561	WPI_UNLOCK(sc);
3562
3563	WPI_RXON_LOCK(sc);
3564	wpi_set_promisc(sc);
3565
3566	if (wpi_send_rxon(sc, 1, 1) != 0) {
3567		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3568		    __func__);
3569	}
3570	WPI_RXON_UNLOCK(sc);
3571}
3572
3573static void
3574wpi_update_mcast(struct ieee80211com *ic)
3575{
3576	/* Ignore */
3577}
3578
3579static void
3580wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3581{
3582	struct wpi_cmd_led led;
3583
3584	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3585
3586	led.which = which;
3587	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3588	led.off = off;
3589	led.on = on;
3590	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3591}
3592
3593static int
3594wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3595{
3596	struct wpi_cmd_timing cmd;
3597	uint64_t val, mod;
3598
3599	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3600
3601	memset(&cmd, 0, sizeof cmd);
3602	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3603	cmd.bintval = htole16(ni->ni_intval);
3604	cmd.lintval = htole16(10);
3605
3606	/* Compute remaining time until next beacon. */
3607	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3608	mod = le64toh(cmd.tstamp) % val;
3609	cmd.binitval = htole32((uint32_t)(val - mod));
3610
3611	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3612	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3613
3614	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3615}
3616
3617/*
3618 * This function is called periodically (every 60 seconds) to adjust output
3619 * power to temperature changes.
3620 */
3621static void
3622wpi_power_calibration(struct wpi_softc *sc)
3623{
3624	int temp;
3625
3626	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3627
3628	/* Update sensor data. */
3629	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3630	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3631
3632	/* Sanity-check read value. */
3633	if (temp < -260 || temp > 25) {
3634		/* This can't be correct, ignore. */
3635		DPRINTF(sc, WPI_DEBUG_TEMP,
3636		    "out-of-range temperature reported: %d\n", temp);
3637		return;
3638	}
3639
3640	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3641
3642	/* Adjust Tx power if need be. */
3643	if (abs(temp - sc->temp) <= 6)
3644		return;
3645
3646	sc->temp = temp;
3647
3648	if (wpi_set_txpower(sc, 1) != 0) {
3649		/* just warn, too bad for the automatic calibration... */
3650		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3651	}
3652}
3653
3654/*
3655 * Set TX power for current channel.
3656 */
3657static int
3658wpi_set_txpower(struct wpi_softc *sc, int async)
3659{
3660	struct wpi_power_group *group;
3661	struct wpi_cmd_txpower cmd;
3662	uint8_t chan;
3663	int idx, is_chan_5ghz, i;
3664
3665	/* Retrieve current channel from last RXON. */
3666	chan = sc->rxon.chan;
3667	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3668
3669	/* Find the TX power group to which this channel belongs. */
3670	if (is_chan_5ghz) {
3671		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3672			if (chan <= group->chan)
3673				break;
3674	} else
3675		group = &sc->groups[0];
3676
3677	memset(&cmd, 0, sizeof cmd);
3678	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3679	cmd.chan = htole16(chan);
3680
3681	/* Set TX power for all OFDM and CCK rates. */
3682	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3683		/* Retrieve TX power for this channel/rate. */
3684		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3685
3686		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3687
3688		if (is_chan_5ghz) {
3689			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3690			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3691		} else {
3692			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3693			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3694		}
3695		DPRINTF(sc, WPI_DEBUG_TEMP,
3696		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3697	}
3698
3699	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3700}
3701
3702/*
3703 * Determine Tx power index for a given channel/rate combination.
3704 * This takes into account the regulatory information from EEPROM and the
3705 * current temperature.
3706 */
3707static int
3708wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3709    uint8_t chan, int is_chan_5ghz, int ridx)
3710{
3711/* Fixed-point arithmetic division using a n-bit fractional part. */
3712#define fdivround(a, b, n)	\
3713	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3714
3715/* Linear interpolation. */
3716#define interpolate(x, x1, y1, x2, y2, n)	\
3717	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3718
3719	struct wpi_power_sample *sample;
3720	int pwr, idx;
3721
3722	/* Default TX power is group maximum TX power minus 3dB. */
3723	pwr = group->maxpwr / 2;
3724
3725	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3726	switch (ridx) {
3727	case WPI_RIDX_OFDM36:
3728		pwr -= is_chan_5ghz ?  5 : 0;
3729		break;
3730	case WPI_RIDX_OFDM48:
3731		pwr -= is_chan_5ghz ? 10 : 7;
3732		break;
3733	case WPI_RIDX_OFDM54:
3734		pwr -= is_chan_5ghz ? 12 : 9;
3735		break;
3736	}
3737
3738	/* Never exceed the channel maximum allowed TX power. */
3739	pwr = min(pwr, sc->maxpwr[chan]);
3740
3741	/* Retrieve TX power index into gain tables from samples. */
3742	for (sample = group->samples; sample < &group->samples[3]; sample++)
3743		if (pwr > sample[1].power)
3744			break;
3745	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3746	idx = interpolate(pwr, sample[0].power, sample[0].index,
3747	    sample[1].power, sample[1].index, 19);
3748
3749	/*-
3750	 * Adjust power index based on current temperature:
3751	 * - if cooler than factory-calibrated: decrease output power
3752	 * - if warmer than factory-calibrated: increase output power
3753	 */
3754	idx -= (sc->temp - group->temp) * 11 / 100;
3755
3756	/* Decrease TX power for CCK rates (-5dB). */
3757	if (ridx >= WPI_RIDX_CCK1)
3758		idx += 10;
3759
3760	/* Make sure idx stays in a valid range. */
3761	if (idx < 0)
3762		return 0;
3763	if (idx > WPI_MAX_PWR_INDEX)
3764		return WPI_MAX_PWR_INDEX;
3765	return idx;
3766
3767#undef interpolate
3768#undef fdivround
3769}
3770
3771/*
3772 * Set STA mode power saving level (between 0 and 5).
3773 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3774 */
3775static int
3776wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3777{
3778	struct wpi_pmgt_cmd cmd;
3779	const struct wpi_pmgt *pmgt;
3780	uint32_t max, reg;
3781	uint8_t skip_dtim;
3782	int i;
3783
3784	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3785	    "%s: dtim=%d, level=%d, async=%d\n",
3786	    __func__, dtim, level, async);
3787
3788	/* Select which PS parameters to use. */
3789	if (dtim <= 10)
3790		pmgt = &wpi_pmgt[0][level];
3791	else
3792		pmgt = &wpi_pmgt[1][level];
3793
3794	memset(&cmd, 0, sizeof cmd);
3795	if (level != 0)	/* not CAM */
3796		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3797	/* Retrieve PCIe Active State Power Management (ASPM). */
3798	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
3799	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
3800		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3801
3802	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3803	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3804
3805	if (dtim == 0) {
3806		dtim = 1;
3807		skip_dtim = 0;
3808	} else
3809		skip_dtim = pmgt->skip_dtim;
3810
3811	if (skip_dtim != 0) {
3812		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3813		max = pmgt->intval[4];
3814		if (max == (uint32_t)-1)
3815			max = dtim * (skip_dtim + 1);
3816		else if (max > dtim)
3817			max = rounddown(max, dtim);
3818	} else
3819		max = dtim;
3820
3821	for (i = 0; i < 5; i++)
3822		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3823
3824	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3825}
3826
3827static int
3828wpi_send_btcoex(struct wpi_softc *sc)
3829{
3830	struct wpi_bluetooth cmd;
3831
3832	memset(&cmd, 0, sizeof cmd);
3833	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3834	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3835	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3836	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3837	    __func__);
3838	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3839}
3840
3841static int
3842wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3843{
3844	int error;
3845
3846	if (async)
3847		WPI_RXON_LOCK_ASSERT(sc);
3848
3849	if (assoc && wpi_check_bss_filter(sc) != 0) {
3850		struct wpi_assoc rxon_assoc;
3851
3852		rxon_assoc.flags = sc->rxon.flags;
3853		rxon_assoc.filter = sc->rxon.filter;
3854		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3855		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3856		rxon_assoc.reserved = 0;
3857
3858		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3859		    sizeof (struct wpi_assoc), async);
3860		if (error != 0) {
3861			device_printf(sc->sc_dev,
3862			    "RXON_ASSOC command failed, error %d\n", error);
3863			return error;
3864		}
3865	} else {
3866		if (async) {
3867			WPI_NT_LOCK(sc);
3868			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3869			    sizeof (struct wpi_rxon), async);
3870			if (error == 0)
3871				wpi_clear_node_table(sc);
3872			WPI_NT_UNLOCK(sc);
3873		} else {
3874			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3875			    sizeof (struct wpi_rxon), async);
3876			if (error == 0)
3877				wpi_clear_node_table(sc);
3878		}
3879
3880		if (error != 0) {
3881			device_printf(sc->sc_dev,
3882			    "RXON command failed, error %d\n", error);
3883			return error;
3884		}
3885
3886		/* Add broadcast node. */
3887		error = wpi_add_broadcast_node(sc, async);
3888		if (error != 0) {
3889			device_printf(sc->sc_dev,
3890			    "could not add broadcast node, error %d\n", error);
3891			return error;
3892		}
3893	}
3894
3895	/* Configuration has changed, set Tx power accordingly. */
3896	if ((error = wpi_set_txpower(sc, async)) != 0) {
3897		device_printf(sc->sc_dev,
3898		    "%s: could not set TX power, error %d\n", __func__, error);
3899		return error;
3900	}
3901
3902	return 0;
3903}
3904
3905/**
3906 * Configure the card to listen to a particular channel, this transisions the
3907 * card in to being able to receive frames from remote devices.
3908 */
3909static int
3910wpi_config(struct wpi_softc *sc)
3911{
3912	struct ieee80211com *ic = &sc->sc_ic;
3913	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3914	struct ieee80211_channel *c = ic->ic_curchan;
3915	int error;
3916
3917	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3918
3919	/* Set power saving level to CAM during initialization. */
3920	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3921		device_printf(sc->sc_dev,
3922		    "%s: could not set power saving level\n", __func__);
3923		return error;
3924	}
3925
3926	/* Configure bluetooth coexistence. */
3927	if ((error = wpi_send_btcoex(sc)) != 0) {
3928		device_printf(sc->sc_dev,
3929		    "could not configure bluetooth coexistence\n");
3930		return error;
3931	}
3932
3933	/* Configure adapter. */
3934	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3935	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3936
3937	/* Set default channel. */
3938	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3939	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3940	if (IEEE80211_IS_CHAN_2GHZ(c))
3941		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3942
3943	sc->rxon.filter = WPI_FILTER_MULTICAST;
3944	switch (ic->ic_opmode) {
3945	case IEEE80211_M_STA:
3946		sc->rxon.mode = WPI_MODE_STA;
3947		break;
3948	case IEEE80211_M_IBSS:
3949		sc->rxon.mode = WPI_MODE_IBSS;
3950		sc->rxon.filter |= WPI_FILTER_BEACON;
3951		break;
3952	case IEEE80211_M_HOSTAP:
3953		/* XXX workaround for beaconing */
3954		sc->rxon.mode = WPI_MODE_IBSS;
3955		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3956		break;
3957	case IEEE80211_M_AHDEMO:
3958		sc->rxon.mode = WPI_MODE_HOSTAP;
3959		break;
3960	case IEEE80211_M_MONITOR:
3961		sc->rxon.mode = WPI_MODE_MONITOR;
3962		break;
3963	default:
3964		device_printf(sc->sc_dev, "unknown opmode %d\n",
3965		    ic->ic_opmode);
3966		return EINVAL;
3967	}
3968	sc->rxon.filter = htole32(sc->rxon.filter);
3969	wpi_set_promisc(sc);
3970	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3971	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3972
3973	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3974		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3975		    __func__);
3976		return error;
3977	}
3978
3979	/* Setup rate scalling. */
3980	if ((error = wpi_mrr_setup(sc)) != 0) {
3981		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3982		    error);
3983		return error;
3984	}
3985
3986	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3987
3988	return 0;
3989}
3990
3991static uint16_t
3992wpi_get_active_dwell_time(struct wpi_softc *sc,
3993    struct ieee80211_channel *c, uint8_t n_probes)
3994{
3995	/* No channel? Default to 2GHz settings. */
3996	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3997		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3998		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3999	}
4000
4001	/* 5GHz dwell time. */
4002	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
4003	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4004}
4005
4006/*
4007 * Limit the total dwell time.
4008 *
4009 * Returns the dwell time in milliseconds.
4010 */
4011static uint16_t
4012wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4013{
4014	struct ieee80211com *ic = &sc->sc_ic;
4015	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4016	uint16_t bintval = 0;
4017
4018	/* bintval is in TU (1.024mS) */
4019	if (vap != NULL)
4020		bintval = vap->iv_bss->ni_intval;
4021
4022	/*
4023	 * If it's non-zero, we should calculate the minimum of
4024	 * it and the DWELL_BASE.
4025	 *
4026	 * XXX Yes, the math should take into account that bintval
4027	 * is 1.024mS, not 1mS..
4028	 */
4029	if (bintval > 0) {
4030		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4031		    bintval);
4032		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4033	}
4034
4035	/* No association context? Default. */
4036	return dwell_time;
4037}
4038
4039static uint16_t
4040wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4041{
4042	uint16_t passive;
4043
4044	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4045		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4046	else
4047		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4048
4049	/* Clamp to the beacon interval if we're associated. */
4050	return (wpi_limit_dwell(sc, passive));
4051}
4052
4053static uint32_t
4054wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4055{
4056	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4057	uint32_t nbeacons = time / bintval;
4058
4059	if (mod > WPI_PAUSE_MAX_TIME)
4060		mod = WPI_PAUSE_MAX_TIME;
4061
4062	return WPI_PAUSE_SCAN(nbeacons, mod);
4063}
4064
4065/*
4066 * Send a scan request to the firmware.
4067 */
4068static int
4069wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4070{
4071	struct ieee80211com *ic = &sc->sc_ic;
4072	struct ieee80211_scan_state *ss = ic->ic_scan;
4073	struct ieee80211vap *vap = ss->ss_vap;
4074	struct wpi_scan_hdr *hdr;
4075	struct wpi_cmd_data *tx;
4076	struct wpi_scan_essid *essids;
4077	struct wpi_scan_chan *chan;
4078	struct ieee80211_frame *wh;
4079	struct ieee80211_rateset *rs;
4080	uint16_t bintval, buflen, dwell_active, dwell_passive;
4081	uint8_t *buf, *frm, i, nssid;
4082	int bgscan, error;
4083
4084	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4085
4086	/*
4087	 * We are absolutely not allowed to send a scan command when another
4088	 * scan command is pending.
4089	 */
4090	if (callout_pending(&sc->scan_timeout)) {
4091		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4092		    __func__);
4093		error = EAGAIN;
4094		goto fail;
4095	}
4096
4097	bgscan = wpi_check_bss_filter(sc);
4098	bintval = vap->iv_bss->ni_intval;
4099	if (bgscan != 0 &&
4100	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4101		error = EOPNOTSUPP;
4102		goto fail;
4103	}
4104
4105	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4106	if (buf == NULL) {
4107		device_printf(sc->sc_dev,
4108		    "%s: could not allocate buffer for scan command\n",
4109		    __func__);
4110		error = ENOMEM;
4111		goto fail;
4112	}
4113	hdr = (struct wpi_scan_hdr *)buf;
4114
4115	/*
4116	 * Move to the next channel if no packets are received within 10 msecs
4117	 * after sending the probe request.
4118	 */
4119	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4120	hdr->quiet_threshold = htole16(1);
4121
4122	if (bgscan != 0) {
4123		/*
4124		 * Max needs to be greater than active and passive and quiet!
4125		 * It's also in microseconds!
4126		 */
4127		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4128		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4129		    bintval));
4130	}
4131
4132	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4133
4134	tx = (struct wpi_cmd_data *)(hdr + 1);
4135	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4136	tx->id = WPI_ID_BROADCAST;
4137	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4138
4139	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4140		/* Send probe requests at 6Mbps. */
4141		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4142		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4143	} else {
4144		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4145		/* Send probe requests at 1Mbps. */
4146		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4147		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4148	}
4149
4150	essids = (struct wpi_scan_essid *)(tx + 1);
4151	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4152	for (i = 0; i < nssid; i++) {
4153		essids[i].id = IEEE80211_ELEMID_SSID;
4154		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4155		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4156#ifdef WPI_DEBUG
4157		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4158			printf("Scanning Essid: ");
4159			ieee80211_print_essid(essids[i].data, essids[i].len);
4160			printf("\n");
4161		}
4162#endif
4163	}
4164
4165	/*
4166	 * Build a probe request frame.  Most of the following code is a
4167	 * copy & paste of what is done in net80211.
4168	 */
4169	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4170	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4171		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4172	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4173	IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4174	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4175	IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4176
4177	frm = (uint8_t *)(wh + 1);
4178	frm = ieee80211_add_ssid(frm, NULL, 0);
4179	frm = ieee80211_add_rates(frm, rs);
4180	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4181		frm = ieee80211_add_xrates(frm, rs);
4182
4183	/* Set length of probe request. */
4184	tx->len = htole16(frm - (uint8_t *)wh);
4185
4186	/*
4187	 * Construct information about the channel that we
4188	 * want to scan. The firmware expects this to be directly
4189	 * after the scan probe request
4190	 */
4191	chan = (struct wpi_scan_chan *)frm;
4192	chan->chan = ieee80211_chan2ieee(ic, c);
4193	chan->flags = 0;
4194	if (nssid) {
4195		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4196		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4197	} else
4198		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4199
4200	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4201		chan->flags |= WPI_CHAN_ACTIVE;
4202
4203	/*
4204	 * Calculate the active/passive dwell times.
4205	 */
4206	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4207	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4208
4209	/* Make sure they're valid. */
4210	if (dwell_active > dwell_passive)
4211		dwell_active = dwell_passive;
4212
4213	chan->active = htole16(dwell_active);
4214	chan->passive = htole16(dwell_passive);
4215
4216	chan->dsp_gain = 0x6e;  /* Default level */
4217
4218	if (IEEE80211_IS_CHAN_5GHZ(c))
4219		chan->rf_gain = 0x3b;
4220	else
4221		chan->rf_gain = 0x28;
4222
4223	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4224	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4225
4226	hdr->nchan++;
4227
4228	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4229		/* XXX Force probe request transmission. */
4230		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4231
4232		chan++;
4233
4234		/* Reduce unnecessary delay. */
4235		chan->flags = 0;
4236		chan->passive = chan->active = hdr->quiet_time;
4237
4238		hdr->nchan++;
4239	}
4240
4241	chan++;
4242
4243	buflen = (uint8_t *)chan - buf;
4244	hdr->len = htole16(buflen);
4245
4246	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4247	    hdr->nchan);
4248	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4249	free(buf, M_DEVBUF);
4250
4251	if (error != 0)
4252		goto fail;
4253
4254	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4255
4256	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4257
4258	return 0;
4259
4260fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4261
4262	return error;
4263}
4264
4265static int
4266wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4267{
4268	struct ieee80211com *ic = vap->iv_ic;
4269	struct ieee80211_node *ni = vap->iv_bss;
4270	struct ieee80211_channel *c = ni->ni_chan;
4271	int error;
4272
4273	WPI_RXON_LOCK(sc);
4274
4275	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4276
4277	/* Update adapter configuration. */
4278	sc->rxon.associd = 0;
4279	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4280	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4281	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4282	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4283	if (IEEE80211_IS_CHAN_2GHZ(c))
4284		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4285	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4286		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4287	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4288		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4289	if (IEEE80211_IS_CHAN_A(c)) {
4290		sc->rxon.cck_mask  = 0;
4291		sc->rxon.ofdm_mask = 0x15;
4292	} else if (IEEE80211_IS_CHAN_B(c)) {
4293		sc->rxon.cck_mask  = 0x03;
4294		sc->rxon.ofdm_mask = 0;
4295	} else {
4296		/* Assume 802.11b/g. */
4297		sc->rxon.cck_mask  = 0x0f;
4298		sc->rxon.ofdm_mask = 0x15;
4299	}
4300
4301	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4302	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4303	    sc->rxon.ofdm_mask);
4304
4305	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4306		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4307		    __func__);
4308	}
4309
4310	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4311
4312	WPI_RXON_UNLOCK(sc);
4313
4314	return error;
4315}
4316
4317static int
4318wpi_config_beacon(struct wpi_vap *wvp)
4319{
4320	struct ieee80211vap *vap = &wvp->wv_vap;
4321	struct ieee80211com *ic = vap->iv_ic;
4322	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4323	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4324	struct wpi_softc *sc = ic->ic_softc;
4325	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4326	struct ieee80211_tim_ie *tie;
4327	struct mbuf *m;
4328	uint8_t *ptr;
4329	int error;
4330
4331	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4332
4333	WPI_VAP_LOCK_ASSERT(wvp);
4334
4335	cmd->len = htole16(bcn->m->m_pkthdr.len);
4336	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4337	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4338
4339	/* XXX seems to be unused */
4340	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4341		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4342		ptr = mtod(bcn->m, uint8_t *);
4343
4344		cmd->tim = htole16(bo->bo_tim - ptr);
4345		cmd->timsz = tie->tim_len;
4346	}
4347
4348	/* Necessary for recursion in ieee80211_beacon_update(). */
4349	m = bcn->m;
4350	bcn->m = m_dup(m, M_NOWAIT);
4351	if (bcn->m == NULL) {
4352		device_printf(sc->sc_dev,
4353		    "%s: could not copy beacon frame\n", __func__);
4354		error = ENOMEM;
4355		goto end;
4356	}
4357
4358	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4359		device_printf(sc->sc_dev,
4360		    "%s: could not update beacon frame, error %d", __func__,
4361		    error);
4362		m_freem(bcn->m);
4363	}
4364
4365	/* Restore mbuf. */
4366end:	bcn->m = m;
4367
4368	return error;
4369}
4370
4371static int
4372wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4373{
4374	struct ieee80211vap *vap = ni->ni_vap;
4375	struct wpi_vap *wvp = WPI_VAP(vap);
4376	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4377	struct mbuf *m;
4378	int error;
4379
4380	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4381
4382	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4383		return EINVAL;
4384
4385	m = ieee80211_beacon_alloc(ni);
4386	if (m == NULL) {
4387		device_printf(sc->sc_dev,
4388		    "%s: could not allocate beacon frame\n", __func__);
4389		return ENOMEM;
4390	}
4391
4392	WPI_VAP_LOCK(wvp);
4393	if (bcn->m != NULL)
4394		m_freem(bcn->m);
4395
4396	bcn->m = m;
4397
4398	error = wpi_config_beacon(wvp);
4399	WPI_VAP_UNLOCK(wvp);
4400
4401	return error;
4402}
4403
4404static void
4405wpi_update_beacon(struct ieee80211vap *vap, int item)
4406{
4407	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4408	struct wpi_vap *wvp = WPI_VAP(vap);
4409	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4410	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4411	struct ieee80211_node *ni = vap->iv_bss;
4412	int mcast = 0;
4413
4414	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4415
4416	WPI_VAP_LOCK(wvp);
4417	if (bcn->m == NULL) {
4418		bcn->m = ieee80211_beacon_alloc(ni);
4419		if (bcn->m == NULL) {
4420			device_printf(sc->sc_dev,
4421			    "%s: could not allocate beacon frame\n", __func__);
4422
4423			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4424			    __func__);
4425
4426			WPI_VAP_UNLOCK(wvp);
4427			return;
4428		}
4429	}
4430	WPI_VAP_UNLOCK(wvp);
4431
4432	if (item == IEEE80211_BEACON_TIM)
4433		mcast = 1;	/* TODO */
4434
4435	setbit(bo->bo_flags, item);
4436	ieee80211_beacon_update(ni, bcn->m, mcast);
4437
4438	WPI_VAP_LOCK(wvp);
4439	wpi_config_beacon(wvp);
4440	WPI_VAP_UNLOCK(wvp);
4441
4442	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4443}
4444
4445static void
4446wpi_newassoc(struct ieee80211_node *ni, int isnew)
4447{
4448	struct ieee80211vap *vap = ni->ni_vap;
4449	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4450	struct wpi_node *wn = WPI_NODE(ni);
4451	int error;
4452
4453	WPI_NT_LOCK(sc);
4454
4455	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4456
4457	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4458		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4459			device_printf(sc->sc_dev,
4460			    "%s: could not add IBSS node, error %d\n",
4461			    __func__, error);
4462		}
4463	}
4464	WPI_NT_UNLOCK(sc);
4465}
4466
4467static int
4468wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4469{
4470	struct ieee80211com *ic = vap->iv_ic;
4471	struct ieee80211_node *ni = vap->iv_bss;
4472	struct ieee80211_channel *c = ni->ni_chan;
4473	int error;
4474
4475	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4476
4477	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4478		/* Link LED blinks while monitoring. */
4479		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4480		return 0;
4481	}
4482
4483	/* XXX kernel panic workaround */
4484	if (c == IEEE80211_CHAN_ANYC) {
4485		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4486		    __func__);
4487		return EINVAL;
4488	}
4489
4490	if ((error = wpi_set_timing(sc, ni)) != 0) {
4491		device_printf(sc->sc_dev,
4492		    "%s: could not set timing, error %d\n", __func__, error);
4493		return error;
4494	}
4495
4496	/* Update adapter configuration. */
4497	WPI_RXON_LOCK(sc);
4498	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4499	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4500	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4501	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4502	if (IEEE80211_IS_CHAN_2GHZ(c))
4503		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4504	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4505		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4506	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4507		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4508	if (IEEE80211_IS_CHAN_A(c)) {
4509		sc->rxon.cck_mask  = 0;
4510		sc->rxon.ofdm_mask = 0x15;
4511	} else if (IEEE80211_IS_CHAN_B(c)) {
4512		sc->rxon.cck_mask  = 0x03;
4513		sc->rxon.ofdm_mask = 0;
4514	} else {
4515		/* Assume 802.11b/g. */
4516		sc->rxon.cck_mask  = 0x0f;
4517		sc->rxon.ofdm_mask = 0x15;
4518	}
4519	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4520
4521	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4522	    sc->rxon.chan, sc->rxon.flags);
4523
4524	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4525		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4526		    __func__);
4527		return error;
4528	}
4529
4530	/* Start periodic calibration timer. */
4531	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4532
4533	WPI_RXON_UNLOCK(sc);
4534
4535	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4536	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4537		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4538			device_printf(sc->sc_dev,
4539			    "%s: could not setup beacon, error %d\n", __func__,
4540			    error);
4541			return error;
4542		}
4543	}
4544
4545	if (vap->iv_opmode == IEEE80211_M_STA) {
4546		/* Add BSS node. */
4547		WPI_NT_LOCK(sc);
4548		error = wpi_add_sta_node(sc, ni);
4549		WPI_NT_UNLOCK(sc);
4550		if (error != 0) {
4551			device_printf(sc->sc_dev,
4552			    "%s: could not add BSS node, error %d\n", __func__,
4553			    error);
4554			return error;
4555		}
4556	}
4557
4558	/* Link LED always on while associated. */
4559	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4560
4561	/* Enable power-saving mode if requested by user. */
4562	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4563	    vap->iv_opmode != IEEE80211_M_IBSS)
4564		(void)wpi_set_pslevel(sc, 0, 3, 1);
4565
4566	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4567
4568	return 0;
4569}
4570
4571static int
4572wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4573{
4574	const struct ieee80211_cipher *cip = k->wk_cipher;
4575	struct ieee80211vap *vap = ni->ni_vap;
4576	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4577	struct wpi_node *wn = WPI_NODE(ni);
4578	struct wpi_node_info node;
4579	uint16_t kflags;
4580	int error;
4581
4582	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4583
4584	if (wpi_check_node_entry(sc, wn->id) == 0) {
4585		device_printf(sc->sc_dev, "%s: node does not exist\n",
4586		    __func__);
4587		return 0;
4588	}
4589
4590	switch (cip->ic_cipher) {
4591	case IEEE80211_CIPHER_AES_CCM:
4592		kflags = WPI_KFLAG_CCMP;
4593		break;
4594
4595	default:
4596		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4597		    cip->ic_cipher);
4598		return 0;
4599	}
4600
4601	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4602	if (k->wk_flags & IEEE80211_KEY_GROUP)
4603		kflags |= WPI_KFLAG_MULTICAST;
4604
4605	memset(&node, 0, sizeof node);
4606	node.id = wn->id;
4607	node.control = WPI_NODE_UPDATE;
4608	node.flags = WPI_FLAG_KEY_SET;
4609	node.kflags = htole16(kflags);
4610	memcpy(node.key, k->wk_key, k->wk_keylen);
4611again:
4612	DPRINTF(sc, WPI_DEBUG_KEY,
4613	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4614	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4615	    node.id, ether_sprintf(ni->ni_macaddr));
4616
4617	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4618	if (error != 0) {
4619		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4620		    error);
4621		return !error;
4622	}
4623
4624	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4625	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4626		kflags |= WPI_KFLAG_MULTICAST;
4627		node.kflags = htole16(kflags);
4628
4629		goto again;
4630	}
4631
4632	return 1;
4633}
4634
4635static void
4636wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4637{
4638	const struct ieee80211_key *k = arg;
4639	struct ieee80211vap *vap = ni->ni_vap;
4640	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4641	struct wpi_node *wn = WPI_NODE(ni);
4642	int error;
4643
4644	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4645		return;
4646
4647	WPI_NT_LOCK(sc);
4648	error = wpi_load_key(ni, k);
4649	WPI_NT_UNLOCK(sc);
4650
4651	if (error == 0) {
4652		device_printf(sc->sc_dev, "%s: error while setting key\n",
4653		    __func__);
4654	}
4655}
4656
4657static int
4658wpi_set_global_keys(struct ieee80211_node *ni)
4659{
4660	struct ieee80211vap *vap = ni->ni_vap;
4661	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4662	int error = 1;
4663
4664	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4665		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4666			error = wpi_load_key(ni, wk);
4667
4668	return !error;
4669}
4670
4671static int
4672wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4673{
4674	struct ieee80211vap *vap = ni->ni_vap;
4675	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4676	struct wpi_node *wn = WPI_NODE(ni);
4677	struct wpi_node_info node;
4678	uint16_t kflags;
4679	int error;
4680
4681	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4682
4683	if (wpi_check_node_entry(sc, wn->id) == 0) {
4684		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4685		return 1;	/* Nothing to do. */
4686	}
4687
4688	kflags = WPI_KFLAG_KID(k->wk_keyix);
4689	if (k->wk_flags & IEEE80211_KEY_GROUP)
4690		kflags |= WPI_KFLAG_MULTICAST;
4691
4692	memset(&node, 0, sizeof node);
4693	node.id = wn->id;
4694	node.control = WPI_NODE_UPDATE;
4695	node.flags = WPI_FLAG_KEY_SET;
4696	node.kflags = htole16(kflags);
4697again:
4698	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4699	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4700	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4701
4702	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4703	if (error != 0) {
4704		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4705		    error);
4706		return !error;
4707	}
4708
4709	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4710	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4711		kflags |= WPI_KFLAG_MULTICAST;
4712		node.kflags = htole16(kflags);
4713
4714		goto again;
4715	}
4716
4717	return 1;
4718}
4719
4720static void
4721wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4722{
4723	const struct ieee80211_key *k = arg;
4724	struct ieee80211vap *vap = ni->ni_vap;
4725	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4726	struct wpi_node *wn = WPI_NODE(ni);
4727	int error;
4728
4729	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4730		return;
4731
4732	WPI_NT_LOCK(sc);
4733	error = wpi_del_key(ni, k);
4734	WPI_NT_UNLOCK(sc);
4735
4736	if (error == 0) {
4737		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4738		    __func__);
4739	}
4740}
4741
4742static int
4743wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4744    int set)
4745{
4746	struct ieee80211com *ic = vap->iv_ic;
4747	struct wpi_softc *sc = ic->ic_softc;
4748	struct wpi_vap *wvp = WPI_VAP(vap);
4749	struct ieee80211_node *ni;
4750	int error, ni_ref = 0;
4751
4752	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4753
4754	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4755		/* Not for us. */
4756		return 1;
4757	}
4758
4759	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4760		/* XMIT keys are handled in wpi_tx_data(). */
4761		return 1;
4762	}
4763
4764	/* Handle group keys. */
4765	if (&vap->iv_nw_keys[0] <= k &&
4766	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4767		WPI_NT_LOCK(sc);
4768		if (set)
4769			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4770		else
4771			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4772		WPI_NT_UNLOCK(sc);
4773
4774		if (vap->iv_state == IEEE80211_S_RUN) {
4775			ieee80211_iterate_nodes(&ic->ic_sta,
4776			    set ? wpi_load_key_cb : wpi_del_key_cb,
4777			    __DECONST(void *, k));
4778		}
4779
4780		return 1;
4781	}
4782
4783	switch (vap->iv_opmode) {
4784	case IEEE80211_M_STA:
4785		ni = vap->iv_bss;
4786		break;
4787
4788	case IEEE80211_M_IBSS:
4789	case IEEE80211_M_AHDEMO:
4790	case IEEE80211_M_HOSTAP:
4791		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4792		if (ni == NULL)
4793			return 0;	/* should not happen */
4794
4795		ni_ref = 1;
4796		break;
4797
4798	default:
4799		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4800		    vap->iv_opmode);
4801		return 0;
4802	}
4803
4804	WPI_NT_LOCK(sc);
4805	if (set)
4806		error = wpi_load_key(ni, k);
4807	else
4808		error = wpi_del_key(ni, k);
4809	WPI_NT_UNLOCK(sc);
4810
4811	if (ni_ref)
4812		ieee80211_node_decref(ni);
4813
4814	return error;
4815}
4816
4817static int
4818wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
4819{
4820	return wpi_process_key(vap, k, 1);
4821}
4822
4823static int
4824wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4825{
4826	return wpi_process_key(vap, k, 0);
4827}
4828
4829/*
4830 * This function is called after the runtime firmware notifies us of its
4831 * readiness (called in a process context).
4832 */
4833static int
4834wpi_post_alive(struct wpi_softc *sc)
4835{
4836	int ntries, error;
4837
4838	/* Check (again) that the radio is not disabled. */
4839	if ((error = wpi_nic_lock(sc)) != 0)
4840		return error;
4841
4842	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4843
4844	/* NB: Runtime firmware must be up and running. */
4845	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4846		device_printf(sc->sc_dev,
4847		    "RF switch: radio disabled (%s)\n", __func__);
4848		wpi_nic_unlock(sc);
4849		return EPERM;   /* :-) */
4850	}
4851	wpi_nic_unlock(sc);
4852
4853	/* Wait for thermal sensor to calibrate. */
4854	for (ntries = 0; ntries < 1000; ntries++) {
4855		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4856			break;
4857		DELAY(10);
4858	}
4859
4860	if (ntries == 1000) {
4861		device_printf(sc->sc_dev,
4862		    "timeout waiting for thermal sensor calibration\n");
4863		return ETIMEDOUT;
4864	}
4865
4866	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4867	return 0;
4868}
4869
4870/*
4871 * The firmware boot code is small and is intended to be copied directly into
4872 * the NIC internal memory (no DMA transfer).
4873 */
4874static int
4875wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size)
4876{
4877	int error, ntries;
4878
4879	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4880
4881	size /= sizeof (uint32_t);
4882
4883	if ((error = wpi_nic_lock(sc)) != 0)
4884		return error;
4885
4886	/* Copy microcode image into NIC memory. */
4887	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4888	    (const uint32_t *)ucode, size);
4889
4890	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4891	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4892	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4893
4894	/* Start boot load now. */
4895	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4896
4897	/* Wait for transfer to complete. */
4898	for (ntries = 0; ntries < 1000; ntries++) {
4899		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4900		DPRINTF(sc, WPI_DEBUG_HW,
4901		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4902		    WPI_FH_TX_STATUS_IDLE(6),
4903		    status & WPI_FH_TX_STATUS_IDLE(6));
4904		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4905			DPRINTF(sc, WPI_DEBUG_HW,
4906			    "Status Match! - ntries = %d\n", ntries);
4907			break;
4908		}
4909		DELAY(10);
4910	}
4911	if (ntries == 1000) {
4912		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4913		    __func__);
4914		wpi_nic_unlock(sc);
4915		return ETIMEDOUT;
4916	}
4917
4918	/* Enable boot after power up. */
4919	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4920
4921	wpi_nic_unlock(sc);
4922	return 0;
4923}
4924
4925static int
4926wpi_load_firmware(struct wpi_softc *sc)
4927{
4928	struct wpi_fw_info *fw = &sc->fw;
4929	struct wpi_dma_info *dma = &sc->fw_dma;
4930	int error;
4931
4932	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4933
4934	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4935	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4936	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4937	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4938	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4939
4940	/* Tell adapter where to find initialization sections. */
4941	if ((error = wpi_nic_lock(sc)) != 0)
4942		return error;
4943	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4944	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4945	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4946	    dma->paddr + WPI_FW_DATA_MAXSZ);
4947	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4948	wpi_nic_unlock(sc);
4949
4950	/* Load firmware boot code. */
4951	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4952	if (error != 0) {
4953		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4954		    __func__);
4955		return error;
4956	}
4957
4958	/* Now press "execute". */
4959	WPI_WRITE(sc, WPI_RESET, 0);
4960
4961	/* Wait at most one second for first alive notification. */
4962	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4963		device_printf(sc->sc_dev,
4964		    "%s: timeout waiting for adapter to initialize, error %d\n",
4965		    __func__, error);
4966		return error;
4967	}
4968
4969	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4970	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4971	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4972	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4973	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4974
4975	/* Tell adapter where to find runtime sections. */
4976	if ((error = wpi_nic_lock(sc)) != 0)
4977		return error;
4978	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4979	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4980	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4981	    dma->paddr + WPI_FW_DATA_MAXSZ);
4982	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4983	    WPI_FW_UPDATED | fw->main.textsz);
4984	wpi_nic_unlock(sc);
4985
4986	return 0;
4987}
4988
4989static int
4990wpi_read_firmware(struct wpi_softc *sc)
4991{
4992	const struct firmware *fp;
4993	struct wpi_fw_info *fw = &sc->fw;
4994	const struct wpi_firmware_hdr *hdr;
4995	int error;
4996
4997	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4998
4999	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5000	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
5001
5002	WPI_UNLOCK(sc);
5003	fp = firmware_get(WPI_FW_NAME);
5004	WPI_LOCK(sc);
5005
5006	if (fp == NULL) {
5007		device_printf(sc->sc_dev,
5008		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5009		return EINVAL;
5010	}
5011
5012	sc->fw_fp = fp;
5013
5014	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5015		device_printf(sc->sc_dev,
5016		    "firmware file too short: %zu bytes\n", fp->datasize);
5017		error = EINVAL;
5018		goto fail;
5019	}
5020
5021	fw->size = fp->datasize;
5022	fw->data = (const uint8_t *)fp->data;
5023
5024	/* Extract firmware header information. */
5025	hdr = (const struct wpi_firmware_hdr *)fw->data;
5026
5027	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5028	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5029
5030	fw->main.textsz = le32toh(hdr->rtextsz);
5031	fw->main.datasz = le32toh(hdr->rdatasz);
5032	fw->init.textsz = le32toh(hdr->itextsz);
5033	fw->init.datasz = le32toh(hdr->idatasz);
5034	fw->boot.textsz = le32toh(hdr->btextsz);
5035	fw->boot.datasz = 0;
5036
5037	/* Sanity-check firmware header. */
5038	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5039	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5040	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5041	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5042	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5043	    (fw->boot.textsz & 3) != 0) {
5044		device_printf(sc->sc_dev, "invalid firmware header\n");
5045		error = EINVAL;
5046		goto fail;
5047	}
5048
5049	/* Check that all firmware sections fit. */
5050	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5051	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5052		device_printf(sc->sc_dev,
5053		    "firmware file too short: %zu bytes\n", fw->size);
5054		error = EINVAL;
5055		goto fail;
5056	}
5057
5058	/* Get pointers to firmware sections. */
5059	fw->main.text = (const uint8_t *)(hdr + 1);
5060	fw->main.data = fw->main.text + fw->main.textsz;
5061	fw->init.text = fw->main.data + fw->main.datasz;
5062	fw->init.data = fw->init.text + fw->init.textsz;
5063	fw->boot.text = fw->init.data + fw->init.datasz;
5064
5065	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5066	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5067	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5068	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5069	    fw->main.textsz, fw->main.datasz,
5070	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5071
5072	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5073	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5074	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5075	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5076	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5077
5078	return 0;
5079
5080fail:	wpi_unload_firmware(sc);
5081	return error;
5082}
5083
5084/**
5085 * Free the referenced firmware image
5086 */
5087static void
5088wpi_unload_firmware(struct wpi_softc *sc)
5089{
5090	if (sc->fw_fp != NULL) {
5091		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5092		sc->fw_fp = NULL;
5093	}
5094}
5095
5096static int
5097wpi_clock_wait(struct wpi_softc *sc)
5098{
5099	int ntries;
5100
5101	/* Set "initialization complete" bit. */
5102	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5103
5104	/* Wait for clock stabilization. */
5105	for (ntries = 0; ntries < 2500; ntries++) {
5106		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5107			return 0;
5108		DELAY(100);
5109	}
5110	device_printf(sc->sc_dev,
5111	    "%s: timeout waiting for clock stabilization\n", __func__);
5112
5113	return ETIMEDOUT;
5114}
5115
5116static int
5117wpi_apm_init(struct wpi_softc *sc)
5118{
5119	uint32_t reg;
5120	int error;
5121
5122	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5123
5124	/* Disable L0s exit timer (NMI bug workaround). */
5125	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5126	/* Don't wait for ICH L0s (ICH bug workaround). */
5127	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5128
5129	/* Set FH wait threshold to max (HW bug under stress workaround). */
5130	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5131
5132	/* Retrieve PCIe Active State Power Management (ASPM). */
5133	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
5134	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5135	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
5136		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5137	else
5138		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5139
5140	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5141
5142	/* Wait for clock stabilization before accessing prph. */
5143	if ((error = wpi_clock_wait(sc)) != 0)
5144		return error;
5145
5146	if ((error = wpi_nic_lock(sc)) != 0)
5147		return error;
5148	/* Cleanup. */
5149	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5150	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5151
5152	/* Enable DMA and BSM (Bootstrap State Machine). */
5153	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5154	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5155	DELAY(20);
5156	/* Disable L1-Active. */
5157	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5158	wpi_nic_unlock(sc);
5159
5160	return 0;
5161}
5162
5163static void
5164wpi_apm_stop_master(struct wpi_softc *sc)
5165{
5166	int ntries;
5167
5168	/* Stop busmaster DMA activity. */
5169	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5170
5171	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5172	    WPI_GP_CNTRL_MAC_PS)
5173		return; /* Already asleep. */
5174
5175	for (ntries = 0; ntries < 100; ntries++) {
5176		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5177			return;
5178		DELAY(10);
5179	}
5180	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5181	    __func__);
5182}
5183
5184static void
5185wpi_apm_stop(struct wpi_softc *sc)
5186{
5187	wpi_apm_stop_master(sc);
5188
5189	/* Reset the entire device. */
5190	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5191	DELAY(10);
5192	/* Clear "initialization complete" bit. */
5193	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5194}
5195
5196static void
5197wpi_nic_config(struct wpi_softc *sc)
5198{
5199	uint32_t rev;
5200
5201	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5202
5203	/* voodoo from the Linux "driver".. */
5204	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5205	if ((rev & 0xc0) == 0x40)
5206		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5207	else if (!(rev & 0x80))
5208		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5209
5210	if (sc->cap == 0x80)
5211		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5212
5213	if ((sc->rev & 0xf0) == 0xd0)
5214		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5215	else
5216		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5217
5218	if (sc->type > 1)
5219		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5220}
5221
5222static int
5223wpi_hw_init(struct wpi_softc *sc)
5224{
5225	uint8_t chnl;
5226	int ntries, error;
5227
5228	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5229
5230	/* Clear pending interrupts. */
5231	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5232
5233	if ((error = wpi_apm_init(sc)) != 0) {
5234		device_printf(sc->sc_dev,
5235		    "%s: could not power ON adapter, error %d\n", __func__,
5236		    error);
5237		return error;
5238	}
5239
5240	/* Select VMAIN power source. */
5241	if ((error = wpi_nic_lock(sc)) != 0)
5242		return error;
5243	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5244	wpi_nic_unlock(sc);
5245	/* Spin until VMAIN gets selected. */
5246	for (ntries = 0; ntries < 5000; ntries++) {
5247		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5248			break;
5249		DELAY(10);
5250	}
5251	if (ntries == 5000) {
5252		device_printf(sc->sc_dev, "timeout selecting power source\n");
5253		return ETIMEDOUT;
5254	}
5255
5256	/* Perform adapter initialization. */
5257	wpi_nic_config(sc);
5258
5259	/* Initialize RX ring. */
5260	if ((error = wpi_nic_lock(sc)) != 0)
5261		return error;
5262	/* Set physical address of RX ring. */
5263	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5264	/* Set physical address of RX read pointer. */
5265	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5266	    offsetof(struct wpi_shared, next));
5267	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5268	/* Enable RX. */
5269	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5270	    WPI_FH_RX_CONFIG_DMA_ENA |
5271	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5272	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5273	    WPI_FH_RX_CONFIG_MAXFRAG |
5274	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5275	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5276	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5277	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5278	wpi_nic_unlock(sc);
5279	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5280
5281	/* Initialize TX rings. */
5282	if ((error = wpi_nic_lock(sc)) != 0)
5283		return error;
5284	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5285	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5286	/* Enable all 6 TX rings. */
5287	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5288	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5289	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5290	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5291	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5292	/* Set physical address of TX rings. */
5293	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5294	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5295
5296	/* Enable all DMA channels. */
5297	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5298		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5299		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5300		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5301	}
5302	wpi_nic_unlock(sc);
5303	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5304
5305	/* Clear "radio off" and "commands blocked" bits. */
5306	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5307	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5308
5309	/* Clear pending interrupts. */
5310	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5311	/* Enable interrupts. */
5312	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5313
5314	/* _Really_ make sure "radio off" bit is cleared! */
5315	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5316	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5317
5318	if ((error = wpi_load_firmware(sc)) != 0) {
5319		device_printf(sc->sc_dev,
5320		    "%s: could not load firmware, error %d\n", __func__,
5321		    error);
5322		return error;
5323	}
5324	/* Wait at most one second for firmware alive notification. */
5325	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5326		device_printf(sc->sc_dev,
5327		    "%s: timeout waiting for adapter to initialize, error %d\n",
5328		    __func__, error);
5329		return error;
5330	}
5331
5332	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5333
5334	/* Do post-firmware initialization. */
5335	return wpi_post_alive(sc);
5336}
5337
5338static void
5339wpi_hw_stop(struct wpi_softc *sc)
5340{
5341	uint8_t chnl, qid;
5342	int ntries;
5343
5344	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5345
5346	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5347		wpi_nic_lock(sc);
5348
5349	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5350
5351	/* Disable interrupts. */
5352	WPI_WRITE(sc, WPI_INT_MASK, 0);
5353	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5354	WPI_WRITE(